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ABSTRACT ﬁ j/l/
\

-— This paper treats the problem of hyperbolicity, change of type and
nonlinear wave propagation in the flow of viscoelastic fluids. Rate equations
for fluids with and without instantaneous elasticity are derived and
discussed. The equations of fluids with instantaneous elasticity are .."
hyperbolic in unsteady flow and can change type in steady flow. The wave B
speeds depend on velocities and stresses. Some estimates of wave speeds into
states of rest are given. For many of the popular models of fluids the
vorticity is the field variable which changes type. The vorticity of all
fluids with instantaneous elasticity can change type in motions which perturb
rigid ones. Experiments and analysis exhibiting vorticity of changing type @
are exhibited. The linearized viscoelastic problem is governed by equations -
having the properties of a telegraph equation. The damping is small when the e
fluid is very elastic. Elastic fluids have a long memory, a large time -
(Weissenberg number) for relaxation. The damping is rapid when the relaxation
time is small even when the flow is very supercritical. It is shown that
steady flow around a body is of "transonic" type. The linearized problem for
flow over a flat plate is reduced to an integral equation for the vorticity
distribution on the plate. The problem of nonlinear wave propagation is
discussed and the problems of nonlinear smoothing and shocking are
considered. It is shown ( M. Slemrod) that the shocks of vorticity can
arise from smooth data in ‘some models and shocks of velocity in other models.
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SIGNIFICANCE AND EXPLANATION
Viscoelastic liquids exhibit a number of strange and unexpected phenomena
when the influence of elasticity (the "Weissenberg number®) is high.
Numerical simulations of high Weissenberg number flows have encountered
considerable difficulties. It is possible that some of these phenomena are

related to a change of type in the governing equations. This paper reviews

recent results relating to hyperbolic structure of equations for
r. viscoelasticity and the possibility of change of type, which were obtained by

t the author and his co-workers.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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HYPERBOLIC PHENOMENA IN THE FLOW OF VISCOELASTIC FLUIDS

D. D. Joseph*

1. INTRODUCTION

The equations of gas dynamics have a hyperbolic structure which
support waves of compression and rarefaction. The linearized theory of
gas dynamics leads to the wave equation in which compression and rare-
faction waves are on an equal footing in that both types of waves may
propagate without change of form. The nonlinear theory of gas dynamics

leads to striking new qualitative understandings of wave propagation.
Initially smooth waves of compression must shock up. Initial shocks of
rarefaction must smooth out. The equations of steady gas dynamics '..”
chanée type from subsonic to supersonic when the speed of the fluid at ‘
some point exceeds the speed of sound. The field of flow can be parti-
tioned into subsonic parts, governed by an elliptic equation, and a _
supersonic part, governed by a hyperbolic equation. The problem of :;';ﬂ
. change of type in gas dynamics is called transonic flow.

Quasilinear systems of equations governing the flow of incompressi-
ble viscoelastic fluids are also of mixed type when the constitutive

equation admits an instantaneous elastic response. As in gas dynamics, @ o
steady flows of such fluids can change type. . '

I am interested in the possibility that many effects in the flow of
viscoelastic liquids, as well as difficulties ir numerical simulation are :"'.i:','-'?
associated with wave propagation, the nonlinear smoothing of shocks, the ':.“—-1
shock up of smooth solutions and with the appearance of real charac- S
teristics and a change of type analogous to the sonic transition in gas g
dynamics. ;

The notes for this lecture are a compendium for hyperbolic things _. L
arising in the theory of flow of viscoelastic fluids with instantaneous . :".:.'_, ]
elasticity. ]

Fluids with instantaneous elasticity have no instantaneous viscosity
in the same way that Maxwell models have no instantaneous viscosity and 1 ,,,j

Jeffrey's models do. For example

*Department of Aerospace Engineering and Mechanics, University of Minnesota,
Minneapolis, Minnesota 55455

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041
and DAAG29-82-K005, and the Fluid Mechanics Branch of the National Science

Foundation.
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is an Oldroyd rate equation for the determinate part of stress t, D/Dt

is an invariant time derivative, D(u] = 1E(Vg + VgT). where u(x,t) is the

—

velocity, A Is a relaxation time and n i3 the "viscosity". Equation (1.1) -

LN

rw-,,
t. LI

is a Maxwell model. It has a purely elastic instantaneous response. On
the other hand

. Dt DD{u)
1 x-ﬁ + 1 = 2nD[ul + A T)!;— (1.2)

is an 0Oldroyd model with a retardation time A. This equation is of the

Jeffrey's type. The retardation term produces an instantaneous viscous
response superimposed on the elastic response. A, rather than n, is the
measure of the viscous response to impulsive motion. The most general
class of simple fluids with instantaneous elasticity are those whose

histories are convergent in the weighted L, spaces of Coleman and Noll.

MRS )RR
——

- Joseph, Renardy and Saut (1984), hereafter called JRS, derived the gen-
eral form of the rate equation which is implied by the fading memory

theory of Coleman and Noll. More general theories of fading memory

based on different topologies containing, for example, models like (1.2),

have been presented by Saut and Joseph (1983).

It is probable that most polymer solutions have some instantaneous :.w“-:
viscous response following, say, a model like (1.2) with A # O, but per-
haps small. If the instantaneous viscous response is small, say A/) {is S
small, the smoothing effects of viscosity will also be small leading to ?.:'- 'ji,:;-:
shock structure of the type which is well known in gas dynamics. A . a

— —
theory for such viscous smoothing of shocks in viscoelastic fluids has S
been discussed by Saut and Joseph (1983) and Narain and Joseph (1983). ‘
It follows that the study of fluids with instantaneous elasticity ought '_f
to apply to many real fluids which have a small viscous response. _. 1

The visco part of visccoelasticity does not mean that the fluid has 1
a viscous response. It means that the amplitude of 1mpulsivg, shock o
solutions will decay but that the shocks will not smooth. This property
of flow is not shared by gas dynamics where there is no damping. When _.;,_4

the damping is very large (e.g; when A is small), the elastic response is

short. When the damping is small (e.g.; when A {s large), the elastic
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response is long. In most problems with damping, even the simple ones
which arise in the one dimensional theory of kinematic waves (Whitham,
1974, p. 62) it is not possible to form a shock without first satisfying
a criterion for a critical amplitude. Such critical amplitude results
are now well known in the theory of nonlinear wave propagation in vis-
coelastic fluids (see Section 13).

There are possibly many works on wave propagation in viscoelastic
fluids. Of the ones known to me, the works of Coleman and Gurtin (1968)
and Slemrod (1978) seem to me to be the most important. Problems which
perturb uniform flows of Oldroyd ~luids have been studied by Giesekus
(1970), Ultmann and Denn (1970) and Luskin (1984). In these problems the
entire field of flow is either subcritical or supercritical. There is no
problem of transonic type. The possibility of transonic type in the flow
of Oldroyd fluids was first mentioned by Rutkevich (1970), Joseph,
Renardy and Saut (1984) treated the problem of hyperbolicity and change
generally., They introduced the notion that in many models and in all
models on motions perturbing uniform ones, the vorticity is the hyper-
bolic variable which changes type. Yoo, Ahrens and Joseph (1984) tried
to explain the striking results of Metzner, Uebler & Fong (1969) with an
analysis of the vorticity perturbing irrotational sink flow. This type
of hyperbolic flow with zero vorticity in a cone like region and nonzero
vorticity outside was observed in the flow into a hole.

The first detailed solution of flow exhibiting a change of type has
recently been given by Yoo and Joseph (1984). They consider the linear-
ized problem which arises when Poiseuille flow of an upper convected
Maxwell model is perturbed with wavy walls. The vorticity of this flow
will change type when the velocity in the center of the pipe is larger
than a critical value defined by the propagation of shear waves. There
is then a region around the pipe axis in which the vorticity equation is
hyperbolic and a low speed region near the walls where the vorticity
equation is elliptic. They linearize the problem for smal. amplitude
waviness and the linearized problem i{s solved in detail. The charac-
teristic nets depend on the viscoelastic "Mach" number, which is the
ratio (M = U/C) of the unperturbed maximum velocity U to the speed of
shear waves C into the fluid at rest and the elasticity number E. There
is a supercritical (hyperbolic) region around the axis of the pipe when M

> 1. When M >> 1, the diameter of this hyperbolic region is small when

b
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E is large, and large when E is small. Regions of positive and negative
vorticity are swept out along forward facing characteristics in the hy- ]
perbolic region. There is rapid damping of vorticity through a narrow . __’_j
I layer to small vorticity in the core when M >> 1 and the Weissenberg .; 3
number W = M/E tends to zero. (The Weissenberg number is proportional ) :
to the relaxation time of the fluid.)
I‘ The rate of damping of vorticity decreases as W is increased. ; o
Flows with high M appear to be more "elastic" when W is large in the
sense that the damping is suppressed as the relaxation time of the fluid
i{s increased.
- I am going to discuss some sSelected tcpics from the aforementioned . )
‘. papers. I have introduced some new thoughts in these notes. The prob- » 1
lem of flow around bodies treated in Section 11 and the flat plate prob- .
lem of Section 12 seem not to have been considered as transonic type .
- problems before. In Section 12 I have reduced the linearized supercriti- i—m 4
cal problem for flow over a flat plate to a single integral equation. I
would like to know if this problem can be solved. Various parts of the 1
discussion of nonlinear wave propagation in Section 13 are new. -__.4
I I wish to express my gratitude to my colleagues and collaborators ] 4
in different aspects of this work; these are Michael Renardy, Jean .
Claude Saut and, more recently, John Yoo. I also want to acknowledge
the help which I have received from my students Mark Ahrens, Edmond
I O'Donovan and Oliver Riccius. Marshal Slemrod has got a fine result, iﬂw‘:
) right in this ballpark, which appears as Appendix A to this work. Mark -
Ahrens prepared Appendix B. 'f'_. »
: '
|




2. RATE EQUATIONS FOR FLUIDS WITH INSTANTANEOUS ELASTICITY NS

It is perhaps useful to try to understand hyperbolicity in fluids :'-:'. -
- with instantaneous elasticity without choosing special models. We want
o

to know which phenomena are intrinsic and which are accidental arising
only for one or the other of the special models.

A general theory of rate equations for fluids with instantaneous
elasticity was given by JRS. Here we give a slightly different deriva-

tion leading to the general form of quasilinear problems associated with

motions of fluids with instantaneous elasticity.
Let C (x,t) = V.XE VX, be the relative Cauchy strain where ,(x,t)

is the position of x = x (x,t) at t=t. The determinate stress t may be '. )

expressed by a functional of the history of the Cauchy strain,

t L

1 = i [tngt (5.‘)]. (2-1) :..,_..,4?
I=~® ST e

For the moment I state only that the domain of _E is equipped with the
topology of a Hilbert space. Saut and Joseph (1983) show how different
choices of the topological domain of E lead to different types of con-
stitutive equations. I want to make this point again, under (2.4), in the

context of this discussion of the general form of a rate equation. E_

depends on the history of gt(f_.t) and explicitly on the present time,
perhaps through a kernel function and in other ways.
It follows from differentiating (2.1) that

t 3 5, 3 acy L
-d—t ™ K -F- + El[t'ctl_dT] (2-2) R

where f.x[‘-Etl'J is a Frechet derivative, evaluated on €, (x,t). The rep-
resentation theorem for a linear functional on a Hilbert space leads us

1..‘. L T
et s e N

3

to SRR
Lt

1

4

dc, t ac, o
Fift, c | - K(e-1,C (x, 1)) —= (x 1)dt (2.3) R




where K(t-1,C (x,1)) is a fourth order, tensor valued kernel function,

not too singular, satisfying some invariance conditions arising from iso-

tropy (see JRS). The term -g—i— is a derivative holding the history of gt

fixed. This term is again a functional of the form (2.1); in the case of
single integral models with a kernel proportional to e (t-1)/X ye have
aE/at = -1/A (cf. (2.19)). Motivated by this last observation we intro-

duce the suggestive notation

_ def aE o

T s Ay (2.4) y ]
for a constant A. i is stress-like and A is a "relaxation time".

Saut and Joseph (1983) have shown that the smootnness of the kernel 1
K in (2.3) depends on the choice of the topology of convergence for the i )
. <y . 2
history Et(i’T)' Ifr T (x,*) lies in the weighted Lh(O.O) (fading
memory) spaces of Coleman and Noll, then the kernel K must have at .
least the smoothness which is required for the validity of the applica- ;"""J
. . dcy ]
tion of the Schwarz inequality to the integral in (2.3). 1If T lies in

the (fading memory) Sobolev spaces used by Saut and Joseph (1983), then

various derivatives of Dirac measures can appear in the kernel K. These

. T
. § . '
. L0, L, :
."‘ i"'.
[ PP ui U ¥

give rise to "viscosity" terms like the retardation term in (1.2). The

fading memory spaces of Coleman and Noll allow only those constitutive

I .
hbhad L

2
equations which exhibit instantaneous elasticity. The Lh(0.°) fading

memory spaces of Coleman and Noll therefore do not form a general basis ’
for discussion of problems of rheology. They do form a general basis
for discussion of problems of instantaneous elastlcity. In the work

- 2
below dom F = Lh(O,ﬂ).

, -
Since the position at t < t of all particles X on the same path 1
line is the same 1.{ o
%
dx X .

t L
v " 3p talat) -y =0 (2.5) !_ j
]




7
we have
dF, Xy
_— — « 7 - - . . - -
gt "V t W TVEy = oV Txe) ¢ ey - -EiL
where L = L(x,t) = Vu(x,t) and F, = Vx (x,t) Hence,
T
dc, (x,7)  dF, r 9, .
It " 5t -F-t. + Et, rTal -L (g.t)_C_t(gg.t) - Et(gg.t)l_.(_ag,t) (2.6)
and
¢ acy ’ dCyy
( ) 5(1:-1.91,_)-5 dT)iJ = B Kijkl —at dt = Mijkp(i't)ka(i't)
2.7
where
t
Mijkp(i’t) - -[-; (Kijkl + Kij!.k) -c-p!. (x,T)dr (2.8)
du
is symmetric in the first pair of indices and ka = 5;2 . We may write
k
(2.8) as
Iy L(x,t) - + % )
E - _(i.t) L l.t .A_ I (2.9)

where M is the fourth order tensor valued functional defined by (2.8).

Together with the equations of motion

.......

du
psT = -V *+ div 1, div u=0, (2.10)

& vedmere e

k
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(2.9) and (2.10) are a quasilinear system in derivatives of u and 1. The ]
stress-like term 1(x,t) and the coefficients M(x,t) are of lower order ) :
(see JRS) since they do not involve derivatives of u or 1, and have other ]
required properties. Hence, the system ) o »
ar, 3t 3u e
__.1_1 + u 1 M. + l T = O, '~,A~1.'.~._-1
at e 9x ijke axk A ij J
.
du u, »
R R R S R ]
e i J B
®
3ue :
Frenlie 0 (2.11) .
e d
is linear in the derivatives of u,, 1. . and p. P 3
7y L 4
‘We may decompose the fourth order tensor M into symmetric and skew ' ‘_
symmetric parts, g
Miike = Sijke * Pijke

where S is symmetric and A is axisymmetric in k and e. We note that

Bue
S —
ijke axk SijkeDek’
du
e o
A, . — = A_,
ijke axk A1Jkenek i
where R
du u s ]
ek 2 axk axe " ‘»jl"]
and o
> |
LIS
..“‘-“é‘ "' AQ_-A:R. .!‘A. ..‘A:.' .A.L-I.I.J:‘.-‘..‘-.'J‘ ..7' 'A. - ;.A;__: .-'—' ‘.XA ". .-".‘ ;~.'A.-“.. \:‘ ';.:L.-‘;; . ‘.'- ..~ .‘;‘:’ ..'.\:- \_‘—;"L. l‘ “AL‘il;"-_“.:'-;; .:;.:;.;"
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P+ P Piy * Py
pu,? [% - Alul] + Puzz[—‘z_ * Apa| - 2puufA,,, Azzz1]

2
P,, + P
+ (A * Agpg)? Alzzzl - [LZ__E] 20 7.1

Equations governing change of type in Oldroyd models arise from
those just given under the substitutions mentioned in (2.19). In particu-

lar the characteristic surface equation becomes

a+l a-1 n
[pulz = ["2_ T * > Taa + i]]q’lz

+ 2lpugu; - 1,219 (7.12)

. 2 a-1 a+l 1 2
f’uz'(TTn“'a_Tzz+ )J¢z'0

>\

where we have put [P,,,Pz2,A111208222108122:] = (271,38 T220 Tuzs Tazs 3 (Tay = Ta2) )-

8. CONDITIONS FOR A CHANGE OF TYPE. PROBLEMS OF NUMERICAL SIMULA-
TION.

In general the condition (7.11) for hyperbolicity appears to be eas-
iest to satisfy when the speed is large and the normal stresses small,

or large and positive. For the Oldroyd models (7.11) may be written as

2 T22 Tn T22 n 2
[pu, * 5 (-a) - = (isa) - %] [(1+a) - *(a=1) =+ % - pu,]

+ (pulu: - le)z > O (8-1)

We may write (8.1) in dimensionless form by using a scale length and a

scale velocity U. Then dimensionless variables related to dimensional

variables by

U, Ux Tz Ty, T22
[U.V.T.U.Y,M] - [U: ‘l’J'n —T:. T—o. —1:

olc
—

where 14 = n/) and

—
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1 92 3?
[PU: = Anagy - 3 (Py, + Pzz)] 37?! * [2pupu; = (A2 * Azany)] X, 9%,
2 1 92
+foul ¢ Ay = 3 (By ¢ Py 5;—‘, - L.0.T. (7.7
2

We may apply the theory of 279 order quasilinear equations to (7.7).
We 1look for real characteristic surfaces ¢(x,,x,) = const. Let

Vo = (¢;,420), then (7.7) generates real characteristic surfaces given by

[m-hz = Ay - ‘;'(Pn + pzz)]%a + [2puju; = (Ajyz * Az22)]0,02

+ [Duz + Ay - %(Pu + Pzz)]%z =0 (7.8)

We note that if ¢(x,,x;) = const. gives a plane characteristic curve

dx, dx, ¢,
X,(x,), then ¢, + ¢, ax, -0, &, - - e It follows from (7.8) that we

have real characteristics given by

dx, Bt /BT-AC

i e (7.9)
provided that

B*-AC 20 (7.10)
where

T N L TRL)

2B = 2pu,u, - (A2 * Az

C = pu? + Ay, - %(P“ + Py,

The condition (7.10) for real characteristics may be written as

.........

T, v
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A

‘a—aad

etk




o T T T T T T W T T T T Y T W e T W N S Y W T W W IR ST, SO N Te YT T T et e

20

streamlines are always doubly characteristic,

2
d u, . o]
[dx N u—,] = 0. (7.4) A

The streamlines do not change type, from hyperbolic to elliptic because e v'.'_ﬁ.-'
dy/dx {s always real and never complex.

For problems of changing type we have to analyze the roots of the -4
quartic : j

a*a, *+ a’a, * a%a, *aa, + apo = 0 (7.5) .-
The roots of a quartic may be factored into the roots of two quadratics.
The roots of the quadratics are real or complex. Real roots correspond ]
to hyperbolicity with real characteristic directions. -_ - .»-~;

For JRS fluids one of the quadratics has imaginary roots and the . " 3
other can have complex or real roots depending on the values of parame-
ter, velocities and stresses at a point. In this situation we encounter g
a change of type with real characteristic directions only in certain —.-‘-—4
regions of the flow. The roots which govern a change of type are asso- 5». _j
clated with the vorticity. The imaginary roots are associated with the *
relation V¥y = -z, where ¢ is the vorticity and ¢ is the streamfunction. _ )
The streamfunction is associated with an elliptic operator. Discontinu- :.*---1
ous initial data for the streamfunction will be smoothed. !

The analysis of hyperbolicity in plane steady flows is easiest when :
formed in terms of the vorticity ¢ = ¢y , where ¢ is governed by (6.4)
in the plane 1,2, After a little calculation we find that .

pu U, ax_a};_ ) '12' Pis 5%25('7 ) % A ke aTazasT * 15 Aejke Sxi)agx‘

J Tk k™K J e 37k R
- L.0.T., J.k,e = 1,2 (7.6) ®.

where L.O.T. stands for lower order terms and AUKQ- is symmetric in {j
and skew 3ymmetric in kL. Eq (7.6) may be written as ®

- - - - -~ N - " e - - . . - 2Tl Al
- L e, . e - e 2L - - - . T S [ [N PRV S VR TRIE RE i y T kTl S VoA WY WAl VAR WA WeA WL W
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p(au,~u,)
0
;“Mxxxx’Mnxzx
-uMu“*i“l,u.

~aMza11t Ma22y

—————w >
LS

9( uu"Ua)
—aM,i12t M2
-aM;2;2*Mya22

=aM2212*Maa22

-1

=-a

=(au, - uz)Ta.a" + aja® + a,a? + a;a + a,] = 0

where

In general the roots of the 6th order polynomial (7.3) are neither all

real nor all complex.
lines across which discontinuities in certain of the varfables may propa-

gate.

the variables to which they assoclate.

RPN

3y = Miaga -

ay = ~Maa * My -

2
PU,ys

2 = ~Magy * Maggp = Mygya -

a, = My, -

A, = My -

Mizin * Myaaa =

pU, .

........

M2z *Myg -

My * 2puyuy,

‘. . - o
ot ol 2 s

Mi222 * Mina + 2puyuy,

Mll12
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1 0

-a 1

0 0

au,-u, 0
0 au;~uy

0 0
(7.3)

2 2
= plu,+u,)

The real roots correspond to real characteristic

It 1s necessary to identify the real characteristic directions and
It is clear from (7.3) that
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-agz‘-‘ . u,-aa% . u,aaLy" - [ ,,,,% + Mm,%’ + M,,,,zly' + M,,,,%‘;—;j - 1,/
a;t" . ula;‘" + u,a;y“ - [M,,,,% + M,m%’y—’ . M,,,,% s M,m%’j = T/

aTu 3123 31,, aul au: 3u, au; -~
a3t + Ui + uzw T Mangy + Mzzlz_a; + Mzzzxw + Mzzzz'avj = T/

du, du,
3{ + W - O " (7.1)

where (x,,X;) = (x,y). We may write this system as

aq 3 3 -
a—t- + Agx- ’E_y. = g (7.2)

where § stands for the column vector whose components are
(u;,uzp, 114s 21y 122).  The characteristic directions a = dy/dx for steady
flows are determined as the roots of

det |Aa - B| = 0.

This may be written as
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T
P, = -J W n(t-r,I,II)Q"(T)dT

22 - -[ W I(t-ToIoH)_C_( T)dT

R0 = 2[W ;e - W cm]

Fi(0) = z[ 1€ W HC(r)]

The last terms of (6.9) (under the integral) are of leading order in
hyperbolic analysis because they contain first derivatives LU J 1(x.t‘.)
of _qi(_)_g.t) at the present time. These terms are spoilers because they
lead to third derivatives of u, as in (5.4), which do not reduce to
second derivatives of g. This shows that not every popular fluid model
has a vorticity of changing type.

It may be helpful to dra« a distinction between two types of rate
equations. The first type among our special examples depends only on
the velocity and the stress. We may regard the streas components as
unknown, to-be-determined, field variables, Equations (6.2) and (6.3).
The other type, like (6.1) and (6.9), has coefficients which are function-
als on the history of the Cauchy tensor. One could say that these equa-
tions are not "true" rate equations because the coefficlents do not
depend directly on the field variables and problems based on these equa-
tions must be posed as initial history rather than initjal value prob-
lems. Rate equations of the first type are clearly convenient because
the balance equations of mechanics are also relations among the velocity
and stresses and the whole system of balance and constitutive euqations
1s then closed. Points of convenience are not necessarily points of

principle.

7. CLASSIFICATION OF TYPE IN STEADY PLANE FLOW

In plane flows there are six equations for six unknowns; u;, u,, Tii
Tis T2;*Ty2s Po The quasilinear equations which governs the flow of
fluids with instantaneous elasticity may be written as

RO NI AR AR AR G e ]

...--.;
SRR
B
R
-.;_ ..“‘ A
o




16 1
t R
I- I (-W ;(t-1,L,ID C7'(1) ¢ W (t-7,L,IDC(1)}d (6.6) RS
- T
el
where HI = 9W/3I, etc. The determinate stress vanishes on the rest .-
state (C=C~!=1); hence . ':'_1
~*x o D
H.u(t-rr3g3) = "'I(t“l’.3-3)- (607) ..__,,,,_<
The rate equation satisfied by 1 may be obtained from (6.4) by dif-
ferentiating with respect to t, using
‘9
dc T ’ 3
& = -L (U)C() - C(nL(e), ;
-1 T - . _4
a0 = L(t)E™H(x) + ML (L) ‘e
SR
dl dC
at - tr at 2 tr[g( 1)L(t)] . ‘
-‘«' .‘_.
dII dc™! T S
g . —— -1 . o
gt - trgp = 2 tr{CTHL ()] (6.8)

We find that

A 1 - T

T 1=LP+PL v Pl
- t _..~ 1
t + LTp, + I {F(n)er{C(TL(L)] o
o |
+ F(nerlC(nLT(t) 1} dr (6.9) -0 o
R
where SN
o ]
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W W :
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9[3nck + Zg'vatck + ueu_j‘k,ej] + -Z-(a-1)ekeJth[cur1 ilq,e

]

-1 Do, . 21
Z(a’?)rmp‘k.mp Av l:k AekeJ‘Jm.me

+ p[(é% *uVgVu) - (BuVig - ueuj’eckd]

a+l i-a
* Crey [ 7 “mp,m Skp * 2 Vyq.e (curl 5_)0]

[l

= )

+ -
“kej “mp,e s, mp * “mp,me“s,p T “ym,mp'p,e

—— <+ %
* (Tap,e¥p,jm * Tmp,me¥p,i * Tip,me’p,m

)]

* Typ,m%,me * Typ,me’m,p * Typ,m"m,pe o

Moreover

du

dg
ekeJTJm.me = (curl div -T-)k - p[curl af]k = p[_dt—k + (c-V)uk] (6.5)

Potential flow with =0 can be a solution of (6.4) only if the last
bracket in (6.4) vanishes u=Vé,

The BKZ model is a single integral model which is motivated by the
nonlinear theory of elasticity. Let C(t) and C™'(1) be the right relative
Cauchy strain tensor with invariants

(I,II) = (trc(1),trc™(1))
and "strain energy"

W(t-1,I,1I).

The determinate stress i{s given by

.................




14
dt
‘[E?'a(El’lE)*12'21]*1-2@ (6.2)

The upper, lower and corotational Maxwell model correspond to a=1,-1,0,
respectively.
We may say that the JRS models are of the Giesekus type when

2l

v
AP dradivinit

with mobility constant a. The model actually proposed by Giesekus

(1982) has retardation time on the right side which we put to zero for

instantaneous elasticity, al’ is added to the left side and a = 1

dt T
Mgt ~Wx-1Vu(+z+ar=2n (6.3)

Equations of the form (6.1), (6.2) and (6.3) permit hyperbolic waves
of vorticity. The last term on the left of (5.4) may be expressed as a
second order derivative of the vorticity

[ L
{ 1
8 M = - P 1 S
g €kes™impqUa,pme ~ "2 %kesTiq (Ut Hg,e T
; 3
+ lp 4 + 1_€ € A 4 ! o
2 mp’k,mp 2 "kej pqr jmpq’r,me S
A Then (5.4) may be regarded as a second order equation for the vorticity. RN
- The vbrtlcity equation for the three parameter family of 0ldroyd }
P— models can be written as follows. Lf"ﬁ
!
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"[att‘k MRS “e“J‘k.eJ]"ktJ"Jmpquq.pml
-o[3, + WG, - GuNg - vy g ]
* ke "smpa,etaipm * Miympq,ni,p’ e
1~
( ) ¢+ ] (5.4)

- * -
“p,e%sa,pq0 * Yp.aTiqp’e T X Tim,me

def 9
where (-),m = 3xm
tion for the vorticity plus lower order terms whenever the last term on

the left of (5.4) can be expressed in terms of second order derivatives
of ¢ (see (6.3)). Potential flow is possible only when (5.4) is satisfied
with g=0, u=Ve.

(). Equation (5.4) reduces to a second order equa-

6. SPECIAL MODELS

Special constitutive models of fluids with instantaneous elasticity
arise from (2.9) by choosing special forms for the fourth order tensor M
and the stress-like term 1. In fact 1 = 1 for all single integral
models with separable kernels in exponential form with time constant A.

We will consider four special families of constitutive models.

(1) JRS models (introduced by JRS (1984)).

(2) Three parameter family of "Maxwell" models introduced by
Oldroyd.

(3) Models of the Giesekus type.

(4) BKZ models.
The JRS models arise when the fourth-order tensor M is expressed by the
most general expression which involves second order tensors. This leads

to

T

- P0 + DPT + T(an + (A + 13 (6.1)

&hs

1
2

for an arbitrary second order tensor P; the fourth order tensor A has

already been introduced. Coleman's thermodynamics implies that P = _ET.
The Oldroyd models with three constants arises from (6.1) when

The Oldroyd models with three constants arises from (6.1) when

Pear+sly, -y 5a 51, T=1andA chosen so that
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dient u = V¢,
lines Xy (x,t) and the past values of the relative Cauchy strain gt(g.t).

Then g = curl u = 0. The velocity u determines the path
This gives rise, through (2.11), to the values 1(x,t) of the extra stress
at the present time t. It is not guaranteed that this computation will
lead to a 1(x,t) such that curl div t = 0 at each and every point at
which g = 0.

Whenever u = V¢ there are two more equations than unknowns. Evi-
dently only certain special potential flows are compatible with (5.1).
Uniform motions, say u = gxu, for constant U, have 1 = 0 and are always
potential flows.

Another form- of the vorticity equation is fundamental in the study

of hyperbolicity and change of type. We first apply the substantial de-

rivative .dd_t to (5.1). Then we apply ad—t- curl to (2.10), eliminate curl
dx
div ac and find that
d*g
pgez —curl div (ML) = 6, + 6, + &, (5.2)
where
L = Vu, (Vu)i‘j = ajui
g = curl y,
1 Lo
8, = - T curl div 1,
0 = = (curl div 1) 1 ay 2
8 = g¢ (eurl div 1) - curl div %, (5.3)
d du ¢
9 pgg (eurlgs - gf curl w)

Third derivatives of u are all on the left side of (5.2). The right side

contains second derivatives of u and 1, at most. (g, is easentially a

second derivative of 1.) Equation (2.9) shows that 1 and u are of the
same differential order, so that the left side has third order deriva-

tives of u and the left side has second order derivatives of u, at most.
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in 50% glycerin and 49% water solution) using a rotating cylinder appa- -i
ratus, For Maxwell models with a single relaxation time we have
G(0) = n/A, where n 1s the viscosity and A is the relaxation time. There
are some papers which report viscosities and relaxation times which are
obtained by fitting data with some impusle experiments (for example, see
Papanastasiou, Scriven and Macosko (1983), Dodson, Townsend and Walters
(1971), Laun (1978). This type of rheometry suffers from two defects.
Usually a special form for the kernel in the linear theory is assumed.

. o .
. [P TN
ORI T

The kernel {s represented by an exponential or by a sum of exponentials.
A more serious defect is that it is usually assumed, wrongly, that the
early time response to impulse which gives G(0) satisfies an overly sim-
plified asymptotic (for large time) theory (see Narain and Joseph (1984) ,
for a full discussion and remedy for this defect). From the impulse
data reported in many different papers we have estimated that wave
speeds for water-based polymer solutions are of the order of 10 cm/sec.
The wave speeds of polymer melts are of the order of 100 cm/sec. At o

the same time, the large viscosities of melts reduce the possibility of :®

achieving large velocities. Hence for the flow of melts we expect that
) the flow is usually subcritical M < 1.

E We (I, Oliver Riccius and Gordon Beavers) have developed a wave
3 ‘ speed meter which appears to give direct, reproducible values for C. A ‘

patent has been applied for.

E 5. VORTICITY

. Some important special models give rise to a hyperbolic vorticity
equation. It is of interest to derive the equation for the vorticity
without making assumptions other than that the fluid has instantaneous

elasticity, i.e., the quasilinear system (2.11) governs.
The vorticity g satisfies

n(a—at- g *+uvVg = pz-Vu + curl div 1. (5.1)

Equation (5.1) is satisfied by g = O if and only if curl div 1 = 0. This

condition is always satisfied by Newtonian fluids for which

b 1 = n(Vu + VET) for a constant viscosity n giving rise to :
curl divy = nV‘_g. In this case potential flow {3 always a solution of -Q

(5.1). More generally we may verify that potential flow u = V¢,

¥ o CXx) is a solution of (5.1) if and only if div 1 is the gradient of

a_potential.

Given the potential & we may obtain the velocity as a gra-
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There may of course be more than one wave speed. If C is not real there
will be rapidly growing solutions. The reader may see more details of
this type of analysis in the studies by Rutkevich (1969, 1972) of Oldroyd

models.

4§, WAVE SPEEDS II, PHYSICAL

The subject of gas dynamics would be in deep trouble if it were not
possible to know the speed of sound. This type of deep trouble should
be a concern in the study of hyperbolicity in the flow of viscoelastic
fluids. In fact the way to know if a fluid has instantaneous elasticity
is to show it has a wave speed. Now showing that a certain fluid has a
wave speed is not easy. First of ali, there are many fluids for which
there are no wave speeds. These common cases are for fluids like
Newtonian ones, or even viscoelastic ones with a big viscous response
(say, A/X is not small), which do not have an instantaneous elastic re-
sponse, or a predominantly elastic response to impulsive data. Secondly,
the fluids which admit a wave speed admit infinitely many wave speeds.
Just as the speed of sound in a gas at a point depends on the thermody-
namic condition there, a wave in a viscoelastic fluid at a point depends
on the velocity and the state of stress there. So each problem gives
rise to its own field of wave speeds.

The simplest type of wave propagation is into a region at rest.

The wave speed for this is

&)
C o (4.1)

: where G(0) is the instantaneous value of the shear relaxation modulus
}h G(s). In fact all kinds of small amplitude discontinuities will propa-
gate with this speed, jumps in acceleration (Coleman and Gurtin, 1968),
} jumps In velocity and even in displacement (Narain and Joseph, 1982).
: ‘ The same propagation speed (4.1) holds for waves propagating into regions
?. undergoing rigid motions. We shall show that flows which perturb rigid
; motions go supercritical when U/C > 1. This wave speed is a fundamental
. material parameter. There are at present no rheometers for measuring
1 G(0) (or C) and there are no tables of values. E. H. Lieb, (1975), In his
P o PhD \thesls. n!egsured C = 8.0 cm/sec in one fluid (carbomethylcellulose
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can be expressed in terms of the vorticity { = curl u. Bernard Coleman
has shown that his thermodynamics imply that the fourth order tensor S
is derivable from an energy and, as a consequence

Sijke - SkeiJ

:_ 3. WAVE SPEEDS I, THEORETICAL

k The quasilinear system is called evolutionary if the Cauchy initial
value problem for perturbation of arbitrary motion is well posed (see

. Gelfand, 1963). We look at periodic initial data whose perfod is so

- small that t,u,p are essentially constant over the period 2w/k, k=|k|

over which

"T:__vv
Y . .

(6x,8u,8p) = (o,v,m) exp ik'x

are rapidly varying, k-« . We seek propagating waves of the foram

Senne  aaanc
] . R

(61,6u,6p) = (o,v,7) exp i(k-x+wt) (3.1)

and (g,v,7) depend only on the components of u and M which appear as
coefficients of derivatives in the quasilinear system (2.11). The result-
ing equations are then divided by k and the right side of (2.11) vanishes

as k + », This leads to the homogeneous equations for the components of

def
(g,v,7) with k/k = n fixed

9[} + g'_rg]v1 v - njoij - 0(;1(-)

w 1
[E * 9’5]% " MijkeVkMe = O(%) (3.2)

The homogeneous system corresponding to (3.2) can be solved if and only
if the determinant of the coefficient vanishes. The system is evolution-
b_ ary if there are real wave speeds

)
~ e,
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C - ‘,_n- - ‘,2 (8.2)
pA p

is the speed of a wave of vorticity into a fluid in uniform motion. The
criterion (8.1) for hyperbolicity

[H’u' + %(l-a) - %(l*a) - 1] [(1*a)% + (a-1)-;- +1- H’v’]

+ [Muv - t2>0 (8.3)

depends only on the viscoelastic Mach number M (and the parameter
ae[-1,1]). When a = 1 (upper convected Maxwell model), the criterion
(8.3) can be written as

MIv¥(1+0) + u?(1+Y) - 2 tuvl
- (1+7)(1+0) + T2 > 0 (8.4)

This criterion is satisfied for high speed flow if the stresses a,Y,1 are
not large and of the wrong sign.

The vorticity equation changes type at points at which the right
side of (8.1) or (8.3) vanishes. Numerical simulations of problems of
changing type can be very difficult. For example numerical simulations
of transonic flows have only become satisfactory in recent years and
they are still being improved. Problems of the transonic type can be
expected in numerical simulations of the flow of viscoelastic fluid.

Steady flow of the Oldroyd fluids (6.2) is governed by the follow-
ing system of dimensionless equations

div u = 0,

M*(u-V) u + Vp - div 1 = 0,

uVx - a(D1 + D) + 18 -

I:)
]
o
]
!
-4
~
E =

(8.5)
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is the Weissenberg number, which may be regarded as a dimensionless
relaxation time measured {n units of d/U. Stresses relax slowly when W

is large. The fluid has a long memory.

The high Weissenberg number problem is that people doing numerical
analysis can't get answers when the stress levels are high. This prob-
iem is evidently independent of the "transonic" problem of change of
type. Most of the computations in which one encounters this problem are
for flows without inertia, p = 0. Yoo and Joseph (1984) also encountered i
this problem in high speed flows involving change of type. They found
that regions of positive and negative vorticity decay rapidly when W is
small (even if the "Mach" number is large). When W is large the super-
critical regions are more "purely" hyperbolic in that the damping of the (
vorticity is suppressed. We have something like a telegraph equation
with damping proportional to 1/W. (See (12.19).

Though the high Heissenberg number‘problem and problems of change
of type are independent they may be related problems in certain special |
cases. Though flows without inertia will not ordinarily change type, the
criterion for change of type wherein B? - AC changes sign can be inter-
esting even when p = O,

For the upper convected Maxwell model (a = 1) we find from (8.1) {
that when p = 0

BZ - AC = lez = [Tll + %][Tzz + %]- (806)

The equations for steady flow are elliptic when t.is is negative. In
fact, this quantity appears to approach zero very raplidly as A (or W) is

increased in numerical integrations of steady flows. In fact, B? - AC is

always negative for the upper convected Maxwell model

t
~(t=1)/A .- g
1 %1 = {% [ e (t-1) C l(r)dt. (8.7)
- =t
Since 5;;' has positive eigenvalues, the principal values rt,, + %. T2 * % «
are positive and therefore
-
» f
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det Tia 2 0. (8.8)

In numerical integrations using finite elements or finite differences,
values of TU and uy are obtained from discrete steps in which the cri-
terion (8.8) may be violated. In doing numerical integrations one should
verify that the condition (8.8) is not violated.

| Some constitutive models, like the corotational one with a = 0 may
undergo real change of type even when p = 0.

People doing flow computations for viscoelastic fluids are able to
go to higher Weissenberg numbers when they have constitutive equations
with more Newtonian viscosity (non-zero retardation times). This obser-
vation suggests that viscosity methods for dealing with problem of
change of type and shocks could also be useful for solving the high
Weissenberg number problem. So far however the people doing numerical
works have not used the viscosity method in the limits of small viscos-

ity.

9. LINEARIZED PROBLEMS OF CHANGE OF TYPE

Up to now our study has been exact and fully nonlinear. We may
advance our understanding of the problems of vorticity of changing type
by considering sinipler problems which arise under linearization.

We first identify a class of motions, say motions in the plane or
axisymmetric motions. We find some special exact solution of all the
equations which fall in the given class. Usually this special solution
is featureless, like uniform flow, flow into a sink, flow in a channel,
flow between cylinders, extensional flow and so on. The featureless
solution does not exhibit the unusual features of change of type. We
then perturb all the equations around the special one with perturbations
in the given class, and we linearize. This leads us to linearized prob-
lems with varjable coefficients depending alone on the special solution
and not on the perturbation. We analyze the linear perturbed problem
for hyperbolicity and change of type. The equations for the characteris-
tics are given by (7.10) where A,B,C are evaluated on the unperturbed
special solution.

The procedures of linearization are such that the characteristic
directions are the same for each and every linear problem perturbing the

.']
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special one. The characteristic surface> for linearized problems are a
gift, since nothing beyond the special solution {s needed to compute
them. We can know which are the elliptic regions and which the hyper-
bolic regions of flow cheaply, but to find other properties of the per-
turbed flow, say isovorticity and streamlines, we are obliged to solve
linear PDE's.

JRS (1984) treated the 1linearized problem for a change of type in
shear flow and extensional flow for the family of Oldroyd models char-
acterized by the parameter a (1,1]. They also treated sink flow in
the plane and circular Couette floﬁ of an upper convected Maxwell model
{a=1). They identified the regions of subcritical (elliptic) and super-
critical (hyperbolic) flow, but they did not compute the characteristics
or solve some boundary value problem. Shear flow u = «xy, x is the rate
of shear, is hyperbolic outside a strip centered on y = 0. Extensional
flow (u,v) = s(x,~y), s is the rate of extension, is either hyperbolic
outside an ellipse (where u and v are large) or inside a region bounded
by branches of a hyperbola (x%/A?) - (y*/B*) < 1 (where the velocity need
not be large. Sink flow with radial velocity u, = -Q/r (potential flow)
is hyperbolic when the radius r is small

/2
r < [AQ(%Q-Z)]

provided that the source strength Q > 2n/p, where n is the viscosity.
Couette flow outside a rotating cylinder of radius a is hyperbolic in an
annulus whose inner radius is either a or 13 greater than a, depending on
conditions. When the inner radius of the annulus of hyperbolicity is
greater than a we have another example where the region of high speed
flow is elliptic and regions of lower speed are hyperbolic. The varia-
tion of the stresses is important.

Yoo, Ahrens and Joseph (1984) have tried to explain some striking
experimental results of Metzner, Uebler and Fong (1969) with an analysis
of the vorticity perturbing irrotational sink flow. The main point at
issue in the experiments of Metzner, et al., i3 that they observe a coni-
cal region of zero vorticity. Outside this region the flow is rota-
tional. If we accept the experimental results at face value, we must
conclude that there are surfaces across which some derivatives of the

vorticity are discontinuous. This type of behavior says "look for hyper-

bolicity and change of type." Such a fleld could not be supported by an

- -
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elliptic vorticity field.

In the experiments of Metzner, Uebler & Fong (1969) a fluid ls
sucked from a pipe of large diameter through a sudden contraction. If
the hole into which the flow goes is small the problem may be thought
to be a form of sink flow. Because there are boundary walls, the flow
through a sudden contraction is not a sink flow in a strict sense. We
shall imagine first that the flow into the hole {3 not strongly influ-
enced by the walls of the large pipe. We then have a hole in the semi
infinite region above a plane. This flow is then regarded as an axisym-
metric perturbation of sink flow without boundaries. The characteristic
surfaces for the vorticity of all axisymmetric linearized problems per-
turbing sink flow can then be obtained by integrating the differential
equations for the characteristics. Yoo, Ahrens and Joseph then tried to
determine if the characteristic surfaces computed in this way could be
the locus for the discontinuity in the derivatives of the vorticity
observed in the experiments. It is l.portant to verify that the charac-
teristics are cone like in the region where potential sink flow was
observed and that the region of potential flow is in the spherical
annulus of hyperbolicity. These issues are addressed below.

Metzner, Uebler and Fong (1969) consider high speed flow of viscoe-
lastic fluids into a sudden contraction. They say that "A tentative
analysis of the observed velocity field suggests the flow upstream of
the small duct to be radially directed toward the origin of the spheri-

cal coordinate system. If this is 30 the continuity equation gives
ur? = f(e). ()

They actually measure velocities in the cone and they report that their
measurements were accurate and that f(6) may be taken as constant when
0 S @ s 10° They also write that up = ug = 0 in the cone. Outside of
the cone there is secondary motion and nonzero vorticity.

The nature of the comparison of theory and experiment, explained in
the captions of Figs. 9.1 and 9.2, is discussed in greater detail in the
paper of Yoo, Ahrens and Joseph (1984), It turns out that the regions of
hyperbolicity are model sensitive. Using the measured values of physical
parameters in the equation one finds that the observed potential flow
does lie In the hyperbolic region (some points are outside the hyperbolic
region in Fig. 9.2(b)). The characteristic surfaces are cone like in the

regions where potential flow was observed.
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Elliptic

a= -]
(lower convected)

Hyperbolic

9‘#/2 1
| {
r¥* 0 10 20 30 40
cm
=0
C Elliptic
a=290
C (corotational)
Hyperbolic
S
8=mw/2 ﬁll‘;ptic ) ] )
! R T
r* r* O 10 20 30 40
0 cm
Flliptic
a=1

(upper convected)

Hyperbolic

O=7/2
. 3
r* 0 10 20 30 40
cm
Figute y,1 Metzner, Uebler & Fong (1969) measured potential

flow in the sectorlal box designated S. The cross-
Sections of characteristic surfaces of revolution
which are tangent to the cone of semi vertex angle
10° at the origin are called C. There are two such
surfaces of revolution.
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Fig. 9.2.

Schematic diagram of flow into a sudden contraction
(Metzner, Uebler and Tong (1969)). The vorticity
appears to vanish in a cone wvith nonzero vorticity
outside. Accepting this, a jump in some derivative
of the vorticity on the cone is required. The
measurenents verifying potential flow were taken in a
cone with 6 = 10° and at a certain value in and

out of the pipe. The regions where potential flow
vas measured are in the gsectorial boxes shown in
Fig. 9.2.

We regard the cooparisons of theory and experiment in
Fig. 9.2 as exploratory and mot definitive. It is of
course striking that the experiments of Metzner, Uebler
and Fong (1969) do appear to imvolve a vorticity of
changing type. It would be interestirg to see if this
striking type of experimental result could be repeated
by other investigators using different fluids and
experimental arrangements. We hasten to add that the
Separan solution used in the experiment is not an Oldroyd
model and surely cannot be characterized by a viscosity
and relaxation time. In fact only special wmodels give
the vorticity precisely as the quantity which changes
type. We have already remarked that models with true
viscosity; e.g., retardation times, will smooth discon-
tinuities, with only a little smoothing if the retarda-
tion "viscosity" parameter is small. Probably 81l the
polymer solutions used in experiments have some small
smoothing. In view of all these uncertainties in theory
and experiments it would be premsture to make strong
claims.
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10. CHANNEL FLOWS WITH WAVY WALLS
' Yoo and Joseph (1984) solved the problem of flow of an upper con-
vected Maxwell model through a channel with wavy walls linearized for
small waviness. It is easy to find an exact solution of the equations
when the walls are flat. The velocity profile 1s the same quadratic one
that one finds in Newtonian fluids. There are some normal stresses
which are absent in the Newtonian case. This Poiseuille flow is per-
turbed and linearized. The characteristics and regions of hyperbolicity
can be computed without specifying the nature of the perturbation. Yoo
and Joseph went further. They used a specific perturbation, the ampli-
tude of the waviness of the walls. They defined the linearized problem
for small waviness and solved it numerically. The Yoo-Joseph paper
gives the first actual computation of a flow with change of type.

We are going to outline the analysis and some of the main results
of Yoo and Joseph. We shall express the equations in terms of the
"Mach" number M = U/C and the elasticity number E = nA/pd? (this is in-

dependent of U). The Weissenberg number Ugl/d is given by W = M/E.

u, * vy =0, (10.1a)
]
ug ¢ vug ¢ W(px o, ry) = 0, (10.1b)
1
uv, ¢ vvy + W(py Tt Yy) = 0, (10.1¢)
ug_ + voy - 2(0*1)ux - 214 = -—2:. (10.14d)
Y WE
ut, * vt = (Yelu =~ (g*tl)v_ = -—l:. (10.1e)
X y y X WE
Y
Y, ot VY, -2tV - 2(Ye)y . - —— (10.1€)
MY E

We shall seek and find a solution of these equations satisfying no slip
conditions at the walls
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u=ve=0aty=z(1+ e sin nx) (10.2)
with symmetric streamlines
-a-!-v-Oaty-O. ('0-3)
ay

It is noteworthy that our solution is completely determined by data
(10.2) and (10.3) on the velocity alone. It is not necessary, and it
would be wrong to prescribe more about velocity or stresses. The vorti-

city w = curl u is related to the streamfunction

_|3% , 3%
w=curl u=ue = ['3_)(1 + 3 |8z (10.4)

where w(x,y) satisfies

(M‘u’-o-‘l)mxx + 2(M’uv-t)wxy + (M’v’-Y-j)myy

+ (ux-vy)(o 1 +tyy) + (uy+vx)(Y -0 )

+
Xy ny‘ XX yy xx

+ + - - - -
oyuxx Ztyuxy + quyy vaxx ervxy vayy 0.

Equation (10.5) may be written as

wax + ZBmxy + Cwyy + L.0.T. = 0 (10.6)

where the terms L.0.T. are of lower order for hyperbolic analysis (see
JRS, 1984). Characteristic directions
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p B v BI-AC
& .2, ,
dx A A

B a Muv - 1,

C = M2 - ¥y - (10.7)

for the vorticity exist whenever

def
= 12 -~ 2M3ruv - (1+Y)(1+0) + MZAv3(1+0) + M2u2(1+Y) > 0. (10.8)

1

The expression (10.8) is expressed in terms of unknown velocity and
stress fields. The criterion (10.8) for hyperbolicity can be satisfied in
some regions of flow and not in others. The border I = 0 between the
elliptic and hyperbolic regions of flow i{s like the sonic line in gas
dynamics. Across this line the equations are said to change type.

Equation (10.1) and all the equations of this section are general in
that they apply to every plane problem, not just the channel flow prob-
lem i{ntroduced in Section 1.

No« we shall solve the governing equations for flow ih a channel
with straight walls € = 0.

(Uo,Vo) (1'Y2.0)1

(PorTo) = -2M(x,yWE,

(04, Vo) (8M2Ey2,0),

Ho = Y (10.9)

‘ne basic motion depends exclusively on the Weissenberg number W = M/E

measuring the size of stresses. The solution (10.9) is relatively fea-
tureless and, in particular, it glves no {ndication of hyperbolicity.
Now we consider any plane perturbation of (10.9). The problem with

wavy walls {3 one such perturbation, but thére are {nfinitely many
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33 e
others. We may linearize the formula (10.3) for the characteristics of
any flow slightly perturbing the Poiseuille flow (10.9). The charac-
teristics for all these perturbations j"
-2y/E 1 Wy’ﬂ)’ - UEy? - i‘;
% i ‘;; 1 (10.10) oo
_(y2_1)1 * 8Ey2 + W -‘__
° i
e 4
are defined in terms of quantities defined for the basic flow (10.9) and
are given once and for all, independent of the perturbation.
Equation (10.10) shows that flows perturbing plane Poiseuille flow —. <
can exhibit a change of type with a "sonic" 1line I = 0 given by 3
Ey?) = (y*-1)? - 2Ey* - 33 = O (-1 sys.
LI
Since I(y?) is monotonically decreasing, it has a maximum at y? = 0 and »
£(0) = 1 - W >0 v
®
;: K . 1
if and only if the viscoelastic "Mach" number M > 1. The "sonic" line
across which the flow changes type is y = y* where (y*?) = 0 :_:;_'_:j:i
[
- 1/2 R
i/2 R
y* = {1 ¢ 28 - 2[E? ¢ E ¢ -
yM2 N
A
The linearized problem for small ¢ is . -4
u_+v_ =0, (10.11a) SR
X y
(1-y?) -2v+1(--) 0 (10.11p) ’
yody y MEPy 79 Ty ’ * o }
e
: _~.‘__-.1
-y2 - - - ST
(1-y )vx + ﬁ’(py Ty Yy) 0, (10.11¢) B .i
® !
s
(1-ya_ + 16M%Eyv - 2(BM’Ey*+1)u + byt + uMyuy/E»o/M./E -0, j'-_fj‘.;l;-'.i
(10.114) o
.
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w -

(-yHy, + lmyvx/E - v Y/MYE = O, (10.11e)
(1-y’)rx - 2MWE + 2yY - (BM’Ey’H)vx -y + U/MYE = 0 (10.111) Ty
where
u(x,+t) = 2 sin nx »
v(x,¢1) = 0,
v(x,0) = uy(x.O) = 0. (10.12) ’
Yoo and Joseph solved the equations (10.11) using only the velocity data
(10.12) and the method of separation to reduce these equations to ordi- o
nary differential equations in y. The ordinary differential equations ' )
were solved numerically. The vorticity o
def ;
e
- - - - 2
w vx uy v w (10-13) !
satisfies an equation .
— —-— a ““‘i
: VE o, |2/E ‘ ’
_g2)2 _ 2 _ —_ - -yl
[(1 y9) 8Ey W]wxx + i Youo "W i ==y w,
MYE
N WE ’
= - - 16Eyu_ + u . - 2(1-y*)v
M/E T xy ~ 2D
1
- . [ ]
+ W[thi + 2yYyy 2yoxx + lle] (10.14)
of changing type whose characteristics are given by (10.7). ;.::j:
In Figs. 10.1, 10.2 and 10.3 we have graphed vorticity and stream- .‘"
lines for M = 10. In 10.1'a and

10.2a we superimposed characteristics B
(light) on zero vorticity lines. We first observe that when W is small
the decay of the vorticity is rapid. When W s large the vorticity

decays only very slowly with oscillations all the way to the center,
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FLOW OVER A FLAT PLATE
The problem of flow around a flat plate could be thought to be

2.
loser than flow around a body to a perturbation of uniform flow. In
act, the theory of slender bodies in aerodynamics is a perturbation of
niform flow which is perturbed less by slender bodies than by fat ones.
he aerodynamic theory works well, but only because of the flow follow-
ng condition in which the fluid is required to slip along the slender
ody. In this chapter I am going to give an exact supercritical theory,
alid for all fluids with instantaneous elasticity, such that the vorti-
ity 1s prescribed arbitrarily along the flat plate, with a vanishing
ormal component of velocity on the along the flat plate, with a vanish-
ng normal component of velocity on the plate surface. Presumably the
o slip condition on the plate can also be satisfied by choosing the cor-
ect vorticity distribution on the plate. In the nonlinear problem there
‘111 be a diffusive subcritical region near the plate and a "transonic”
urface outside where the viscoelastic Mach number passes through one.
his type of important problem has yet to be considered and solved in
he theory of flow of viscoelastic fluids.

We now consider two dimensional flow past a flat plate.

s on the half line y = 0, x 2 O.

The plate
The velocity components corresponding

o (x,y) are (u,v) and there is only one component

v u
f vorticity. The velocity components
Y JY
(u,v) [ W'a—x] (12.2)

ay be obtained from a stream function ¥,. We suppose that the velocity

1,v) vanishes at infinity and that

(u,v) = (-U,0) ony = 0, x 2 0.

(12.3)

The vorticity of the perturbed flow satisfies
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Y= (M2-1) ~¥x

UNIFORM
FLOW

—> BODY DISTURBED FLOW -

ZERO |
VORTICITY ]

e,

M U/C, y . ]
B 2- =
c = /ETOV75 Yoo (=l x

Fig. 11.1 Leading characteristics for vorticity in a plane
uniform flow. 4

.l
i

TERMINAL
VELOCITY SR

_—

VOLUME

Fig. 11.2 The jump in the terminal velocity for an air
bubble rising in a liquid. The jump can be
large, say a five-fold increase.
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3.8
/M1

y-d =

where d 13 a constant and U is in the direction x. The characteristics
form a net of straight lines.

If we suppose that a small two dimensional body perturbs uniform
low when U > C then there would be an undisturbed region in front of
the body which could not be reached by disturbances of the vorticity
traveling at velocity C. In a linear theory the first changes in the
vorticity would occur across the leading characteristics which form an
angle like the Mach angle of gas dynamics (see Fig. 11.1). We could call
the undisturbed region of uniform flow a "region of silence".

No one has yet solved a problem of supercritical flow over a body,
evaen in the linearized case and no one has looked for a region of silence
in experiments.

An air bubble rising in a liquid will reach a steady terminal veloc-
ity. The larger the bubble the larger is the terminal speed., Astarita
anda apuzzo (1965) were the first to notice that the terminal velocity of
the bubble is not a smooth function of the bubble volume. There is a
critical volume which is associated with a jump in the terminal velocity,
23 in Fig. 11.2.

This phenomenon has also been studied by Calderbank, Johnson &
Loudon (1670). The fluids used in these experiments are water-based
polymers. The lower value of the critical terminal velocity ranges from
0.1 to 10 cm per sec. These values are not unlike values which we think
are typical for wave speeds in these polymers (see Section 4). The rea-
«nng for the abrupt rise in the terminal velocity are not understood.
Mayoe the abrupt change is associated with a change of type. Then we
might expect to see an abrupt change near M = 1, For Maxwell models M
- AW where R is the Reynolds number and W is the Welssenberg number.
Zana and Leal (1978) give values of RW which vary by decades at critical-
ity. Their method of calculating was not clear. They seemed to have
i9ed some normal stress data which could give very inaccurate values for
w. If they are nearly right it will be hard to support the idea that the
ibrupt rise {s associated with a change of type. The problem {3 open.
Teo settle thi3s problem we need to have accurate values for the wave

velocity used {n experiments.
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P

g
+ V2 I G[L&x] S.(X) dy (11.12) . ._'};::

4
e T
Mk b b A b

Vo
I

The analysis of supercritical flow {s conveniently framed for equa-

tions of second order. We differentiate (2.12) with respect to x and T
find that o

'.
S_ G" G(Q) :: ;"ﬁ:

2 T
oo 5 - S o - e i L
- T

o

G(O l 'li vz + U! Gnl[ ]]5_(1) dy. (11.13) .-:":, - »:’_:

This equation (11.13) changes type from elliptic to hyperbolic when o

Y

M? = pU?/G(0) = U?/C?

e .
e anet nnde

increases through one.

For Maxwell models (11.13) reduces, using (11.4), to

? ) RO
2 _nf 95 pU %% _ . R
[pU X] 5;[ sz_l;_ + Y 3x 0 (11.19) °

this equation changes type when M? = U?/C%, C? = n/p) increases through

one. ]
The vorticity of steady flows with i{nstantaneous elasticity perturb- f’ j

ing uniform flow will change type from elliptic to hyperb~lic when the o :
ratio of the velocity of the free stream to the velocity of propagation ix{?i}
of shear waves :;3;31
fnto a fluw'1 at rest exceeds unity. Characteristics for vorticity in LB
plane flow are given by S ]
S
*
. : o ]
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The x derivatives under the integral may be replaced with x derivatives.
Equation (11.7) shows that states of uniform vorticity are solutions of
the equations of motion of fluids with instantaneous elasticity which

perturb uniform flow. Potential flow is possible. . S
For steady flows it is convenient to change variables in the inte- "4
grals. We write 4
_od

x = x - U(t-1), dy = Udx (11.8) bt 1

.
P

Equation,(11.3) may be written as

X

3;[_ 1 X~
U x - G(O)A[U(E)J *J j-.c'[—u-x] A[E(X)J dy (11.9)
Equation (11.6) is now
U %
U = curl div t (11.10)
and (11.7) becomes
x [ 2 o
2 2 XX 3 2 s _.
pUt [—.G[ 5 ] [W + V,]Q(x) dx (11.11) T
which, after integrating the first term under the integral by parts, j:".t';
becomes 9 B
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e
. .
2.,y 2. sy G*(t-1)ALu (11.3)
—— — . + - St
m ™ 0)Alu(x,t . t-t)Alu(x,1)] dx 3 o
Ol
where the last term is of lower differential order for hyperbolic analy- f~‘_:‘ “
sis. =
For all the Oldroyd models th2 perturbation of uniform motion leads j'.:
to the linearized Maxell model with .
G(s) = 1;- exp(-s/\) (11.4) f
-
The rate equation for a Maxwell model in a flow perturbing uniform flow o 1
is : ;
N ﬁ
A | 1-3 *
-— — - - . B
5 * V" Alu(x,t) e (11.5) R
The equations of motion are .‘_-.‘ ]
O
T
du du SR
- —— = - -, .
Pl3t U w Vp + div 1. R

The vorticity § = curl u satisfies

SR
? d R
9[5% + U a—i‘-] = curl div 1. (11.6)
, —
Using (2.1) and curl div Alu(x,1)] = ag(x,1) R

where

<
o
«®
©
c*

'®

oot T

L R A A P
. . e : PR R T
\ R S RN

A . alatatata’al ko atatl il .




44

ty to the wave speed is greater than one, and the wave velocity which is
a property of the fluid, cannot be controlled. It follows that even {f
the f{low away from the body is supercritical the flow near the body
will always be subcritical, and the underlying problem {s really one of
"transonic" type.

We are goling to show that the equations which govern perturbations
of uniform flow have a simple form, depending on the density p and
relaxation modulus G(s) alone, and are model independent. The flow near
the body depends on the constitutive model.

The stress in a simple incompressible fluid may be decomposed into

an isotropic and a determinate part. The determinate part is the consti-
tutive equation which relates stress and deformation. In linearization
at uniform motion, the determinate stress in fluids with instantaneous
elasticity is given by an integral (see JRS, 1984)

t

1= I G(t-1)Alu(x, 1] dt (11.1)
where

x - U(t-1)

x- A P
au; du;

= T ey = 1 o 23

Ayl = Vu + Vul, Ay 3 * X

and G i3 smooth, positive and monotone decreasing. The speed of various

kinds of shear waves (Coleman and Gurtin, 1968, Narain and Joseph, 1982)
intoc a fluid of density p at rest is

G(0)

C = y—~=,. 11.2
5 ( )

The "Mach" number {s U/C. By differentiating (2.1) with respect to t,
holding x fixed, we find that
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M = % = U//n/kp

exceeds one (see Eq. (2.4),. Here U is the velocity of the unperturbed
uniform flow, and C {3 the wave velocity for propagation of shear waves
in a Maxwell fluid. Ultman and Denn (1970) did not notice that it is
precisely the vorticity which changes type. They refer to their liaeari-
zation as an Oseen approximation. Oseen introduced his linearization
around uniform flow for slow viscous flow, because Stokes equations have
no solution for flow around bodies in two dimensions. Oseen's equations
do not change type. Ultman and Denn (1971) use Oseens approximate
method to compute subcritical flow and they say that their calculations
agree with their experiments when the fluid parameters are properly
chosen.

In a second paper, Ultman and Denn (1970) consider the supercritical
flow but they do not give experimental results and they do not discuss
or try to solve their equations. They attempt to correlate some experi-
mental observations of D, F. James (1967) with the change of type.
James observes a sudden change in the élope of the heat transfer curve
as a function of velocity. This happens at a critical velocity which for
the Polyox solution used by James, was about 1 cm/sec. It is not clear
from the graphs how abrupt this change of slope is, but there is a
change of slope. Ultman and Denn (1970) also suggest that the transi-
tion from subcritical to supercritical flow might explain abrupt changes
in the drag coefficient they say was observed by A. Fabula (1966).
Again, the idea is that the critical velocity at transition is the' wave
speed C. They make an estimate of C from a molecular theory and corre-
late this prediction with the data of James. Of course, any such esti-
mate can at best be expected to give an order of magnitude, since the
molecular theory is coarse and the fluids used in the experiment are not
Maxwell fluids.

Recently Ambari, Deslouis and Tibollet (1984) have considered mass
transfer in the flow of a viscoelastic fluid around a cylinder. They
also find a critical value at which the mass transfer undergoes an ano-
molous transition.

Oseen's methods work because 3slow flow around bodies is in some
sense a perturbation of uniform motlon. The case of fast flow is dif-
ferent becaus<¢ the uniform stream {s not small, but the velocity on the

body must vanish. In supercritical flow the ratio of the stream velocci-~
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Yoo and Joseph did an asymptotic analysis which give the frequency of

the oscillations and other properties of the solution. The second prop-

erty is that regions of positive and negative vorticity which are not

' damped are swept out along characteristics. It would be hard to under-
stand these solutions from the streamline plots.

The same type of hyperbolic dynamics which Yoo and Joseph found in

channels will occur in pipes. Mark Ahrens is working on this problem.

| The change of type which occurs in the center of a pipe may have appli-

cations in the problem of delayed die swell. The phenomenon of delayed
die swell is not well known. At low speeds the jet will spread near the
exit of the jet, as in Fig. 10.4(a) and 10.5(a2). At yet higher speeds the

b o’

y
) jet does not spread near the exit, the swell is delayed, as in Fig. e
10.4(b-d). Fig. 10.5 shows a form of delayed die swell which we have

e

seen repeatedly in our own experiments., The delayed swell seems to R
occur at a critical speed, not so different than what one might expect . - e
) from a change of type. Of course, the reason for the delayed swell is
not understood. The form of the jet reminds one of a hydraulic jump,

which is the shock phenomenon corresponding to shocks in gas dynamics.

i 1. PROBLEMS ASSOCIATED WITH THE FLOW OF VISCOELASTIC FLUIDS X
AROUND BODIES e
It is perhaps not unreasonable to think that far from the body we
have only a small perturbdation of uniform motion with constant velocity L
i ng in the direction x. The body is stationary. s
The vorticity of all steady flows of viscoelastic fluids with in- f:-_'.-:ji-;:,
stantaneous elasticity which perturb uniform flow can change type.
, To be precise, the linearized equations for the vorticity of flows . ;

perturbing uniform flow vanish on states of constant vorticity and the o
type of this equation in steady flow changes when the ratio of the free '
stream velocity of the wave speed increases through unity. This criter-
ion for a change in type may be expressed in terms of a viscoelastic

Mach number.

‘L

Ultman and Denn (1970, 1971) consider the equations for two-dimen-
sional 3teady flow of an upper convected Maxwell fluid. They linearize

at a motion with uniform velocity and zero stress, and they show that

these linearized equations change type when a viscoelastic "Mach" number

. ) ',. * - 'v' .
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(a) (b) (c) (4

Figure 10.4 (After Brenschede and Klein, 1970). Delayed die swell
in polyisobutilene solution is toluol.
D = 48/mR® where & is the volume flow rate and R is
the pipe radius. The critical value D is 14 x 10%
reciprocal seconds.
(a) D= 8 x 10* (b) D= =152 x 10*
(¢c) D = 22.8 x 10" (d) D = 29 x 10"

Figure 10.5 (After H. Glesewkus, 1968). Delayed die swell in a
5% polyacrylamide sclution {n water.
(a) slow speed, (b) post critical speed,
\¢) high speed
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Ly 2L GUO) 3 L Pk, G'(0)
(M-1) 3% - UG(o) ax 5?5 * %O ¢

P
.

X
! o X2 a* 1 crn| XS -
T G)) { -[ [—ux] Ed M [_ul]]c(x) dyx. (12.4) t’

For the Maxwell model (11.4) we get a telegraph equation

N AR
-’

_qy 2% _ %, pU 3p _
(M?-1) 5;% 5;5 B S0

We may write this telegraph equation in dimensionless form -

e
?? M2 g _ 1 ??
-3-;3 + W o L Wi‘ 0 (12.5)
where (x,y) - (x/%,y/%), % is a scale length ..'.
B2 = M* -1>0
and ..
W= UM .
is a Weissenberg number based on 1. ».
Equation (12.5) can be approximated by a wave equation without '
damping when W + = and M > 1 is fixed. For this same M we may expect
rapid damping of the backward heat equation when W is very small.
The other prescribed conditions are that the vorticity must vanish d
’ far from the plate and since v = 0 on the plate, -
B c--ggony-Oxzo (12.6) R
e ay ’ ) [
We need vorticity fields satisfying (12.4) or (12.9) over R? and (12.6) and
(12.3) on the plate.
' The stream function and vorticity are related by a second order °®

<quation

.............................
.......................................................
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az az
[.5;, + S-i!]y = =z(y,x). (12.7)

We may therefore expect that corresponding to any good field r(x,y) we
may solve (12.7) subject to the conditions that ¥ vanishes far from the
plate and

v--gl-00ny-0.xzo. (12.8)
X
In general, we cannot expect that for any field g(y,x)
U-é-?-ony-Oxzo : (12.9)
ay » L] .

It follows that the existence of a solution of the linearized flat plate
problem, in both the suberitical M < 1 and supercritical M > 1 case de-
pends on finding a special prescription of the vorticity z on the plate
(12.6) such that (12.9) is verified.

. I wish now fo consider the supercritical case and to indicate the
method by which our linearized problem may be resolved. It will be con-
venient to start this discussion with an analysis of the telegraph equa-
tion (12.5) for M > 1. To put this problem into canonical form we
change variables settihé

2
{(x,y) = [}%;t.%;z] (12.10)

and find that Z(z,t) = t(y,x) satisfies

L, 3 _ ¢ '
55% *'3% "3z "0 (12.11)

We may expect that this hyperbolic problem will not allow the plate to
influence the flow upstream. We therefore seek solutions f{(z,t) such

that the upstream vorticity vanishes;

t(z,t) =0 for t < 0, -» <z < =

This implies that "initially"

W

(R LA
. e an e




IR R e 3 v
ST TETT T PAds e o e R T T . ——

2(2,0) = g¢(z,0) = 0 (12.12)

e e
L3 T TNy

. whereas
< -
E g(o,t) = g(t) (12.13)
2 ;
2 is prescribed for t > 0. Asymptotically, for large |z| we require that 3
gt *+ 0. L
The problem (12.11), (12.12) and (12.13) can be solved by Laplace ;!1._i1:~?-?
> transform techniques. A well known solution of this problem with uni-
- form vorticity on the plate ERA
r
; £(t) = H(t) = ?:t:g (12.14) ’
has been given by Carlslaw and Jaeger (1963) in the form ;“1
. o
. t L
Wzt = [e22 4 2 l I (37777 dofH(t-2} (12.15)
z Yoi-z2 :;--:
1
where I, is the modified Bessel function of the first kind. The vorti-
city z(-z,t) on the bottom of the plate is given by (12.15) with -z re- ""Z:'-jj
placing z. This solution for flow over a flat plate was given by B. :O“—"
Caswell (1976) in a study of the effects of a leading edge singularity. %
We next note that the field g(y,x) = {(z,t) can now be inserted into S
(12.7), which is an elliptic problem leading to a nearly everywhere dif- ::"v..\"
ferentiable ¥, even when { has simple discontinuities, as in Figure 1. _0 =

We solve (12.7) subject to (12.8), but the solution will not satisfy
(12.9). We can hope to satisfy (12.8) and (12.9) simultaneously by pre-
scribing the perfect vorticity distribution £(t) on the plate. .

To get the t(t,z,g) corresponding to different prescriptions (12.13) [ ] e

2 of the vorticity f(t) on the plate, we could use the method of Duhamel

'- type integrals introduced for start up problems by Narain and Joseph o

E’ (1983). For these integrals we need to superpose using the fundamental :-ﬁ‘?ljl'l
singular solution of (12.11), (12.12) and (12.13) when =

- g(t) = &(t-1) (12.16)




t{'. is a Dirac function. It is easy to see and not hard to prove that the f»'"_::‘jil
3 required solution i{s the time derivative of the step function problem
- just derived when . s
1 fort >
- .1
. g(o,t) Ofort st (12.17)
l Using the aforementioned method I find that the solution of (12.11),
(12,12) and (12.13) s _
. t-2z ra;
C tt,2) = J g(1) Eiz,t-1)dr + e7*/2 gt-2) (12.18) LI
, 0 S
, where N
'
- t 1 /=3
- _ _ 1,(5vY 0%-2%)
. t(z,t) = e 22 4 %I % 2_____ 4.
- z Y oi-2%
The solution z(y,x)of
32 Mz -3_5 - 1 3:
i I I S
¢(0,x) = g(x), (12.19)
z(y,0) = O
is
x-8y 2 > .
tly,x) = g(n) L(y,x-1dr + exp|- L |a(x-8y) (12.20)
0 ax 28W R

where ° .




!
The amplitude of ¢ on x = By is given by exp[--zl-ﬁ] The amplitude

decays rapidly when W i{s small (see Fig. 12.1).
Turning next to the stream function, we find that the solution of
(12.7) with g(y,x) given by (12.20) and

¥(x,0) = 0 for x > 0 (12.21)

is

V- -I I G(YsYol XsX0) T(¥orXo)dyo dx, (12.22)
R-

where R. 1s the complement to the Ifne x > 0, y = 0. The Green function
for this domain, vanishing on the plate is given by (10,1.40) on p. 1208
of Morse & Feshbach (1953). We have to divide their solution by #x.

G(y,¥o|X,Xo) = G(r,ro| ¢, o)

L}
A |-
' "
j—
(7]
-
=)
—
)M
| SR |
(73
-
—
g
| S——
| e |
g
| SR |
b=
~
. N
-
N
3
o

=]
]
-—

] ne r n/2
z -:; sin[-??-] sin[%i][-f-] sy P Or, (12.23)

A

3
—

where (x,y} = r(cos¢,sin¢)
The solution (12.7), satisfying (12.21) is given by (12.22) with
t(y,x) given by (2.20). The fluld will not slip on the plate if

u --Tay-w(x,O) when x > 0; that is,

ke




P T T T T T———.—— Lanadh Al Shui et A M Y

56

-U -l L a_ay ly'o G(Y,¥o| XsX0) E{YosXo)dYo dXo (12.24)

x>0

We have to choose the prescribed plate vorticity g(x) to satisfy (12.24).
1 have no guarantee that there is a g(x) satisfying (12.24). Edmond
O'Donovan is trying to find a numerical approximation for the g(x) which
satisfies (12.24).

It {s probable that the approach which I have taken in this problem
can be generalized to fluids satisfying (12.4). This equation applies to
all fluids with instantaneous elasticity.’ Such a study would show how
the flow depends on the kernel G(s). The Laplace transform methods used
by Narain and Joseph (1982, 1983) to study the linearized dynamics of
shearing motions perturbing rest in viscoelastic fluids are appropriate
for this study too. As in their work I get the following problem for
the transform

Uy,0) = ! e* z(x,y) dx (12.25)
0

where Z(y,w) vanishes for large y and satisfies

- - dl-
k(W) = glw) d—y%

£(0,w) = J e X £(x) dx (12.26)

and
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_ G'(0) _ h(w)
k(w) = WpU? = G(O)] - === - =5,

hlw) = I e U3 c"[%] ds,
0

8w = I; e U® c[%] ds.

One finds that

e - SO, o[%]

W

o - 69 L 2@ . 1)

if G is integrable. The character of the solutions is determined by the
symbol of the operator. We should therefore look at the problem which

arises at large w

! - ' 2;
o <452 5]

or

2,0 . UG 1= 4%t
[ - &5 o - G
which is the transform of the equation

B*Cxx - %G% Ex = Cxx (12.27m)

From this equation we expect that the solution of the present prodblem is
a simple wave as in Figure 12.1 with ¢ = 0 to the left of the line
x = By on the top of the plate, and x = -8y on the bottom plate. The

amplitude of the wave on x = By is given by
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This amplitude tends to zero as G'(0) » -=, When G(0) > 0 and G'(0) = -=
we have the case of singular kernels. Renardy (1982) showed that for
some special singular kernels shear waves would propagate into a fluid

at rest with the wave velocity C = /G(0)/p, with a zero amplitude at the

front and C® connection with non-zero solution across the front. These
properties, as well as the analytic smoothing of sharp fronts with small
viscous terms (small retardation times) occur in the present steady
probiem as well as in the theory of propagation of waves.

Supercritical flow past a flat plate cannot be considered to be a
perturbation of uniform flow. If it is supercritical, the free stream
velocity is finite, perhaps large, but the fluid must come to rest on the
plate. Near the plate, the velocity will be small and the local "Mach"

number less than one even when M: = pU2/G(0) > 1. The governing prob-

lem near the plate is therefore elliptic, or at least not hyperbolic. It
may be true that when M is large the solution of the nonlinear problem
is close to the linear solution (if it exists) except in regions immedi-
ately near the plate. This might suggest boundary layers, but that
thought should be eschewed. We should instead think of a narrow sub-
critical region near the plate which goes supercritical at the "sonic"
line which could also be close to the plate when M > > 1, We have
therefore to consider a "transonic" type of problem and not a boundary
layer type of problem. We know almost nothing about such problems for

viscoelastic fluids.

13. NONLINEAR WAVE PROPAGATION AND SHOCKS

It is well to motivate this chapter by reminding the reader of the
huge differences between linear and nonlinear theories of gas dynamics.
In the linearized theory there are no essential differences between rar-
efaction and compression waves. These waves propagate according to the
wave equation without change of form. In the nonlinear theory an impul-
sive rarefaction will be smoothed by nonlinear effects and a smooth com-
pression will shock up.

Compression waves are impossible in incompressible fluids. Instead
we may perhaps speak of waves of shear or of waves of vorticity. Very
little i{s known about the nonlinear effects in the flow of viscoelastic
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fluids. We should like to know the answers to the following questions.
We are given a constitutive equation in the class with instantaneous
elasticity: Different subclasses in this class can lead to different
results. We want some classification of results. ‘e
(1) Suppose that we are given smooth data. Is there a shock up? R
(11) wWhen there is a shock, what varlables (vorticity, velocity, dis-

placement) become discontinuous?
(i11) We are given impulsive data. Is it possible that the nonlinear '.
terms smooth discontinuities? ‘
We first consider the problem of wave propagation in fluids under-
going rectilinear shear flow. The formulation, due to Coleman and Noll,
is embodied in the representations for shear flow shown in (1.2) of the '._
Appendix, by M+« Slemrod to this paper. Coleman and Gurtin (i968), fol- o
lowing earlier work on longitudinal acceleration waves in cémpresslble 4
materials (1965), showed that the amplitude of a jump discontinuity in ‘ ﬁ"_L':
the fluid acceleration satisfies a simple nonlinear differential equation ’L.""“{
of Bernoulli type with coefficients determined by the instantaneous '
value of the relaxation kernel at the wave and second order instantane-
ous modulus evaluated at the wave. The instantaneous value of the

relaxation kernel is designated as .@

6(x,0) SR

:'.: ¢

where x is the shear rate at the wave and G(k,s) arises as the kernel of s

the integral representation implied by the Riesz theorem for first func- ' )

tional derivatives of the functional t (¢) of (1.2) in Appendix A evalu- t',1

2

ated in the weighted Lhto.-] spaces of Coleman and Noll. This kernel “
®

reduces to G(s) when the wave advances into a region at rest. The speed AR

of the wave

C - G{x,0) ’_. _:

3 ]

denends on the rate of shear where the first derivative is evaluated. In LE::i _'.?j:

general protlems the speed of waves depends on the motion. The second . o
order general problems the speed of waves depends on the motion. The if:jij_?;:*
second order modulus Is an instantaneous evaluation the second Frechet jlv'}‘:j’.:‘-}

derivative at the wave.
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The amplitude equation of Coleman and Gurtin i3 notable because it
is simple, general, rigorous and implies interesting physical results.
They showed that an initial jump discontinuity may either decay or grow
depending on the sign and magnitude of the initial discontinuity. The
assumed jump discontinuity may blow up in finite time. The cause of this
blow up is associated with the nonlinearity. They showed that an accel-
eration wave entering into a region at rest would always decay. This is
a type of nonlinear result of category (ii) which shows that nonlinear
terms can lead to blow up. It is generally assumed that the loss of c?
regularity (blow up) implies the formation of a jump in the n-1 deriva-
tive of velocity (shock up). The decay of acceleration waves is a result
of category (iii) which shows that nonlinear terms can force the decay
of initial discontinuities.

It was not clear how discontinuities in acceleration, which are
equivalent to shocks of the vorticity, would appear in the fluid. The
results discussed in the appendix by M. Slemrod help to clarify this
issue.

Slemrod (1978) showed that the equation of motion for the shearing
perturbation ;(.x.t) of a shearing motion will admit a differentiable (in
x,t) solution for only a finite time for appropriate smooth initial ve-
locity histories when the constitutive relation is

XY o([ e ¥/A v, (x,t-1)d1). (13.1)
0

there o is a nonlinear odd function. The loss of differentiability is
1ssumed to imply the appearance of a discontinuity in v, as shock up of
.he velocity, a vortex sheet. This result is like the one proved by
‘oleman and Gurtin, but implies the shock of smooth data.

In the appendix of this paper Slemrod shows that when the constitu-
ive relation is

TV -J e/ o(v, (x,t-1)d1 (13.2)

0

or a nonlinear o(:), the second derivatives of v(x,t) can blow-up when

he smooth data is given in a certain way. The shock up assumption
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g_Zj

s

which one is obliged to assoclate with this blow-up of second derivatives . ‘ '11

is the appearance of a jump in Ve @ vortex shock or an acceleration dis- 3

continuity. It is interesting to note that 'ro‘y> given by (13.2) satis- , ‘

fies a rate equation ; -
A > LY L gtv (x,t)) (13.3) .Et-:‘i:"-:-:;

“dt A x 7 . ::"-::f;_-_j

N

vaguely resembling some popular models. .‘ -
The results just reviewed show the remarkable effects of the choice BN

of constitutive relations.
It is possible to entertain the notion of successive shock ups from - ,
smooth data. First we get a vortex shock from nonlinear effects associ- . B
ated with (13.2). This gives an acceleration discontinuity which will .:

lead to bloﬁ up of the vorticity if the amplitude of the vortex shock is

larger than the critical amplitude of Coleman & Gurtin. In reservation, ;,.-‘4.
I wish to note that recent calculations with popular models show that Y
the critical amplitude can be infinite. T
I think it would be interesting to see what sort of blow up results L

could be obtained for shear flows of Oldroyd models with instantaneous i—-——-d

elasticity.
The shear flow of the Oldroyd models (6.2) are governed by the

system of first order quasilinear equations.

r
o >'.-
9, - (3’1)1Vx +30
ca)g - D 1. b
Tt [(1 a)e x]vx * 30 ’
pvt STt 0 (13.4)
where v(x,t) {s the rectilinear velocity in the direction y and ’ <
<yy> > ' '
(o0,7Y,1) = (T ¥y , T<xx>. T(xy ). This can be written as o
]
)
'
)
LS 1
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g 1 0 0 o/
1 0 1 0 /A
a=|v]" 2=lo o o) 2|00
K 0 -(a+1)1
B 0 0 (1-a)a-n/A
B=1lo -1 0

he characteristic directions are given by

detl_é;( - §i| - [o'{(’ + (1-a)o - n/x] -0

here ; is the wave speed. The streamlines are characteristic; X = o,

ecause streamlines don't move. The two waves

. t‘{(a—l)u + /A
p

an be identified with waves of vorticity.

[
X

It is clear that the speed of
ne wave depends on how the liquid is stressed.

We should like to know if smooth initial data, given to (13.4) can
low up. This depends on the constitutive equation, as we have already

zen. For example, the problem for the upper and lower convected
axwell models (a?=1) cannot lead to blow up of smooth data because the
yverning problems are linear.

Johnson and Segalman (1977) have shown that (13.4), and (13.4), can

» {ntegrated once:

t t
T % ] e_(t’_s’)/A x{s)cos(/1-a? J x(s')ds')ds,
o .
t t
g = -;‘- _11_:_:. ‘ e"(t‘S)/A K(S)Sln(/l-a!! «(s')ds')ds
. .
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)e approximated by a finite series of multiple integrals:

t (A%s) - z I J K, (81,0048.) At'(s;)... At(sn)ds,... ds_
s=0 n odd /0

(2.3)

restriction to odd order follows from the isotropy condition (1.3).)
assume more is true, namely that in a manner similar to the Taylor
s expansion for an analytic function we take (2.3) to be an equality
the sum may be infinite. Choose

n_ -a(s;*+...+s )
Kn (s.,...,sn) = -aoe als, n" n = ?.3.5...

a is a positive constant. (This is consistent with fluid of fading
y type (3], [6]).) Finally if we define

(e) = Y o g
n odd

itegrate (2.3) by parts we obtain (2.1).

ok

.onstitutive equation (2.2) is equivalent to the choice

i
T
'

a4 4 A 4 2

AR |

o« * - =
- 7
t (A% - J e uso((At(s))S)ds .
s=0 0 .
1
ternative motivation arises from consideration of a material of !1
E AT

ype where Txy(t) satisfies the ordinary differential equation
S Y e o™i - oty (x,t) (2.4) | oo

1 t, -»= ¢t <=, and all x; 0 < x < h , where a as before is a

ve constant. Integration of (2.4) in the usual manner for first e

ordinary differential equations yilelds (2.2).
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t (A% - -t (s, R
s=0 8«0 R
- . [} . .-_.____’ ‘ »’
3% (A" (s = % (A" (s, U =1,2). (1.3)
s=0 s=0 '

Here subscripts x,t denote partial derivatives with respect to x and t

respectively. .
A2. CONSTITUTIVE ASSUMPTIONS Tl
To proceed further it 1is necessary to make some mathematical ;-‘_" ]:
assumptions as to the nature of the functional t. For this analysis we ’.‘. .
assume t has two particularly simple forms, {.e., . )
L

. - o]

t (At(s)) - o[ e v (x,t-s)ds| , (2.1) o 1

b 4 -

s=0 0 _—

and A
@

- - . -

t (A (s) = e (v, (x,t-2))ds , (2.2)

s=0 ] :.-v-—-{

where ¢ is a real valued, odd, analytic function defined on the real line RN
and a i{s a positive constant. In (2.1) we see t is a (generally) non- ""-;.:-‘;
3

linear function of the linear functional .

I e v (x,t-s)ds .
0 x

In (2.2) we see that t is a linear functional of the nonlinear func-
tion o(vx(x.t-s)).

A motivation for the choice (2.1) may be based on the multiple in-
tegral expansions for t originally presented by Green & Rivlin [4] and
Chacon & Riviin [5]) for general viscoelastic materials, In (5] the

.
)
PSP,

authors showed that for t continuous on an appropriate function space, t ~:.j:‘.j-“_.§




76

)1ds with C' replaced by C%. D. D. Joseph observed that this may have
iportant physical consequences as now the appearance of jump discontin-
ty in :;x may be expected, i.e. formation of a vortex shock.

At the request of D. D. Joseph I have prepared this short note ana-
rzing the different effects of (1.1) and (1.2). The technical details of
le breakdown proof are omitted and may be found [1].

. RECTILINEAR SHEARING FLOWS

If in a fixed Cartesian co-ordinate system x,y,z, the velocity
elds of a flowing fluid body has the form

vE - 0, v vix,t), vZ =0 (1.1)

- say that the motion is a rectilinear shearing flow. For such a flow

e condition of incompressibility div v = 0 {s automatically satisfied.

leman & Noll [3] have shown that if the fluid is a simple fluid, then
e componehts of stress obey the relations

™) = ¢t (%)),
a=0

t) - T22(t) = 31 (A%s)) ,
s=0

™*(

™) - T%%t) - 32 (A%s)) ,
s=0

™t .1 .0, (1.2)

re A is the relative shearing history defined by

t
At'(s) - -I Vx(x,t)dT (0 $s s =,
t-s

t,s,,s; are real valued functionals obeying the identities
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APPENDIX A: BREAKDOWN OF SMOOTH SHEARING FLOW IN VISCOELASTIC
FLUIDS FOR TWO CONSTITUTIVE RELATIONS: THE VORTEX SHEET VS. THE
VORTEX SHOCK.

AO. INTRODUCTION

The purpose of this note is to study the effect of choice of con-
stitutive relations on shearing perturbations of steady shearing flows in
a non-linear, isotropic, incompressible, viscoelastic fluid. In an ear-
lier paper [1], I showed that the simple constitutive relation relating

the shearing stress to the shear rate vy

™) - o(I e—“vx(x.t-t)dﬂ. " (0.1)
4]

yields the following result:

The equation of motion for the shearing perturbation v(x,t) of a
non-trivial steady shearing motion will admit a C! in (x,t) solution for
only a finite time for appropriately chosen smooth initial velocity his-
tories. Here ¢ {s a non-linear, odd, real analytic function, ¢' > 0, a is
a positive constant.

The proof of the result hinged on the fact that equations for the
perturbed fluid motion v(x,t) can be written as a non-linear hyperbolic
conservation law with linear damping. In this form the equations of
motion are amenable to study via the use of Riemann invariants and an
argument of Lax [2]. As a side benefit from this formulation continua-
tion theory for hyperbolic equations shows that loss of C!' regularity
implies I;tl + l:'xl + @ in finite time. ; This suggests the appearance of
a jump discontinuity in v , l.e. formation of a vortex sheet.

Sometime after appearance of my result C.J.S. Petrie remarked to me

that a similar result could be obtained for the choice of constitutive

relation

™Y (t) - I e-mo(vx(x.t-t))dt (0.2)
0

for 9,6 as above. Upon working out Petrle's idea I noticed the results

are similar but not the same. Specifically the above mentioned result
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have been smoothed. On the other hand the points near the bottom plate
which could show the development of discontinuous u/x for large time and
large W. Perhaps it is these points at which we may see the development
of shocks of u/x are only what PT&T call "unavoidable noise.” It is
possible to find pictures, say v = 0.5, W = 1, in which one can imagine a
point of discontinuity of the slope of u/x which can be identified with a
shock in the vorticity.

I think that the results shown support the notion, already explored
in Sections 10 and 12, that the Weissenberg number is a measure of the
fluids elasticity and in hyperbolic problems with damping, the damping is
large when the Weissenberg number is small and vice versa. The effect
of the waves 1s almost immediately damped in the case W = 0.1 and is
extraordinarily persistent when W = 500.

It would be interesting to see if and what discontinuities develop
in the squeeze flow problem when all of the prescribed data is smooth
at t = 0.
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An initial boundary value problem for the reduced quasilinear
system requires that one set of boundary and initial conditions. At the
boundaries y = 0 and y = H(t) we have adherence

us=vs=20 at y = 0,
v=0, v=-V aty=H(t)

To specify initial conditions it is enough to give the fields u and v,
that is, f(y,t) at t = 0. PT&T set f(y,0) = -y. Hence

(u,v) = (x,-y) (13.11)
|t=0

which is an irrotational squeeze flow with vanishing stresses and an
outflow independent of y at each x. The wave speeds (13.8) are

dy/dt = C at the bottom plate
|t=0 ‘
and
dy/dt = -1 -C at the top plate.
|t=0

The velocity v

-y at t = 0 is compatible with the prescribed boundary
conditions but u = O ony = 0 and on y = H(t) is incompatible with u = x.
The velocity v and all the stresses are continuous as t + 0 but the ve-
locity u = 0 at the walls 1is incompatible with (13.9). In a linear
theory we could expect this initial discontinuity to propagate into the
interior with a decay in the magnitude of the jump in u. This does not
appear to be true in the results presented by PT&T.

In Fig. 13.2 I have reproduced their results for the evolution of
-fy(y,t) = u/x for R = 1 and increasing W. The graphs »f the evolution
of £ = v do not show Interesting features and are not presented here.

I cannot find evidence for propagating discontinuities of u/x near

the top wall. The wave in u/x propagating from the top plate seems to
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W = VA/h, is the Weissenberg number, B {is diagonal with entries
(0,0,W,W,W,W,R] and D depends on q but not on its derivatives. The wave R
speeds for this system ; = dy/dt are given as the real roots of

[

‘)

L 3
. S
R I

v;’ "lv, 5
S

det[A - ¥B) = WNL-Y)TMHL-Y)* - 1 - WY] = 0

- '®

where M? « RW. The normal component of velocity v = f is triply charac-
teristic. The wave speeds for the vorticity are given by the dimension- _'.‘.f:'_:;f.::;
o

less form of (13.8). i:_'.-_'-:. N
L]

L

o 1 /2 SO
y=+f32 -ﬁ(va el

Numerical results of PT&T show that ¥ + 0 as W +» = in such a way that 1 . ¥
+ WY > 0. There is no Hadamard instability. .
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Fig. 13.1 Squeeze Flow, V>0, h() = ho .

where X,,X,,T,Y depend on (y,t) and p, and

2
t) = 2X, + T_ + R|f + ff
Pa(t) 2 y R[ty + fy t‘yy]

depend only on t, and R {3 the Reynolds number.

We may write the reduced problem as
Ag +Bg, =D (13.10)

where q is the column vector whose components are [f,p,X,,Y,X,,T,g] where
g = ry'

-

e |
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dt A v A
-v :«% . e (13.8) -

where C = /n/Ap is the speed of small amplitude vorticity waves into ®

regions of uniform motion. The wavespeed formula (13.8) shows how the
speed of vorticity for solutions of the type (13.6) depends on the point-
wise values of the normal component of velocity and the tensile stress Y
= Ty Every problem which can be represented in (?3.6) will have wave —. 7 4
speeds for the vorticity which will satisfy (13.8). Numerical results of '
PT&T suggest that for their problem Y/p + c? > 0.

In principle, it should be possible to determine some of the effects
of nonlinearity on propagation by more careful studies of the problem .
treated by PT&T. S

Let hy be the initial distance between the plates and let v be the

constant squeezing velocity

1
(y,t) = E:(y.Vt)

are dimensionless variables, also called y and t. The configuration of o
flow is shown as Fig. 13.1. The dimensionless velocity components are ‘—_1
given by | ]
]
(W) = (xf, (7,8, £0y,8) o |

and have been made dimensionless with V. The stresses are made dimen-
sionless with nV/h,.
The dimensionlesas stress and pressure n are then represented by

e XX
(18X <Yy <X by, [x, + X2y, xT, Y, -;-x’p, + p,] (13.9)
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' I have analyzed their problem using some elementary hyperbolic

theory. 1 work with their reduced equations. The reduced equations

given by (13.10) are a consequence of representation.

These relations imply that

’
Cusvd = VE-xf (y,t)u0(y,8)] (13.6)
N Here, subscripts denote differentiation. We treat the rest of the reduc- s
)
- tion later. For now, consider Eq. (6.4) with a = 1 for the vorticity ~
1‘. azt azg az 2 ﬂ a“
o P GE * Y xar * 2PV gyar t (POt ]
) '
= 2t 2y-0y&T | 13, o
] + 2(puv+r)axay + (pv2-Y A)W L.O.T. (13.7) o
% The vorticity compatible with (13.6) satisfies e
> | L.
def DA
1 du v R
Ty Tz My v e
. = @ t.. =0
x 7 o T

t‘f-:.: |
h [Bzc 3zc] = [_B_u_) E] L"

axat ' Ixay 3ty i

. are first derivatives of w and hence of lower order. We may then write '_-I:jit
. (13.7) as Vo
: 3’ 3’ 3’
. A a—t[ + 2B 3y 3t + C a—y'!- L.O.T.
> b

where A = p, B = pv, C = pv? - Y - % The characteristic equation for

this second order problem are given by ﬁ:j-izj:}
".
o ’

s
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e

x(s) = v (x,3) .

is the shear rate at the layer x at time s $ t. It follows that .
.

t .

T, - -;-‘- x(t)|1 - /1-a% I e (¢ L(s)stn(/ T2 I x(s')ds')ds| = --I-. =
- s oo

.

We may consider fluids with short memories, small A. After integrating

by parts we find that

1, - 2ROl - (1 - aam(t) + 0N+ § -0 (13.5) he

Tnis is in the form i
.

d <xy> 1 <xy> _n v o a2 ? s

3t 7 *+ 37T x vx(x.t)[1 (1 - ad?v_(x,t) + 0(a%) e
which, up to terms O(A®) is like (13.3), leading to the blow up of vorti- -;-—
city when 1 - a? < 0. .
We turn next to a still more complicated flow involving wave propa- it.;':l;
gation, which is originally set in two space dimensions. E-":‘}
N. Phan Thien and R. I. Tanner (1983), hereafter called PT&T, have -.M

considered the problem of flow of an upper convected Maxwell model
which {s induced by squeezing the fluid between infinite parallel planes.
They do not linearize or neglect terms. They call their solution exact
because they find a separable solution (13.6) which reduces the governing .
three dimensional quasilinear system to a nonlinear two-dimensional
aystem which they integrate numerically. They have impulsive initial
data in the following sense. Initially an irrotational plug flow is pre-

scribed. The velocity v normal to the plates increases linearly from .
zero at the bottom to the prescribed value at the top. At this same in- B
itial instant the velocity u parallel to the plate is squeezed out as a
plug flow. Since u must vanish at the plates, this component is pre-
scribed as discontinuous. In linear problems this discontinuity would

. ,.' e

‘
|
,
[}
-
,

.

propagate and decay along characteristics. PT&T do note that their

numerical work shows wave propagation but their graphs are confusing; it t:;f;-"
is hard to tell what is propagating and how it {s propagating. R
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A3. SHEARING PERTURBATION OF A STEADY SHEARING FLOW

Let us assume a viscoelastic fluid satisfies either the constitutive
relation (2.1) or (2.2). Consider the problem when the fluid is confined
between two parallel walls of infinite extent at x = 0 and x = h. The
top wall at x = h moves with velocity V. In the absence of body and

driving forces the equation of »nservation of linear momentum (see

Coleman & Gurtin [7]) becomes

pv, (x,t) = U(I e-"svx(x.t-s))ds)x (3.1)
0

for constitutive relation (2.1) and

th(x.t) = J e'°‘sa(vx(x.t,-s))x ds (3.2)
0

for constitutive relation (2.2). Here p 1is an (assumed) constant mass
density, p > 0 . Also we consider the case of no-slip boundary condi-

tions
v(o,t) = 0, vih,t) = V. (3.3)

Systems (3.1), (3.3) and (3.2), (3.3) admit the steady rectilinear
flow (vt(x.t) = 0) solution

v

v(x) = T"

To study stability of the flow against shearing perturbations we

sSet

VXL = vix,t) - !hi i

We observe that for relation (2.1) this implies

oot i
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A i -as? v j
o pvt(x.t) = g e vx(x,r.-s)ds + Eﬁ)x (3.49) . 1
0 9

a ~

S with boundary condition

S
: ¥0,t) = ¥(n,t) = 0 (3.5) |
L
On the other hand for relation (2.2) we see that the perturbation ' _-:
v(x,t) satisfies . ?
® L 4
o;t(x.t) = J e-uso(\‘;x(x,t-s) + %)x ds (3.6) : :j:

0 CT
—
along with boundary condition (3.5). [ p
In either case we prescribe a smooth velocity history 5
V(x,t) = Vo(x,t) -2 <1 S0 ]
b
consistent with either (3.4), (3.5) or (3.5), (3.6). Thus the two fluid ."_ji
cases are governed by non-linear boundary initial history value problems. \
AN, ANALYSIS OF FLOW WITH FIRST CONSTITUTIVE ASSUMPTION: STRESS !“1
: NON-LINEAR FUNCTION OF A LINEAR FUNCTIONAL OF SHEAR RATE.
:.-. We consider the perturbed flow governed by constitutive relations J
(2.1). In this case the time evolution is governed by (3.4), (3.5). To o f:?;
F; simplify matters we write b -1
o 3
. 1 v v i
o(g) = ;[G(E t ) - O(E)] ' ',;:'_ i
v
. i
u(x,t) = I e % ¥ (x,t-s)ds , Ll
0 ’ L

wix,t) -l P 3‘(x.t-s)ds .
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An integration by parts shows
-«
u(x,t) = v(x,t) - u[ e *? V(x,t-s)ds
0
and hence
U =V, - au. (l&.j)
: If we combine (4.1) with (3.4) we find u,w satisfy the system o 11
| '. . “'
"t = ux » ’
| u, = a(an)x - au , (4.2) o]
OuENER
with boundary conditions i
'Q u(o,t) = u(h,t) = 0, (84.3)
and initial conditions
i u(x,0) = ue(x),
w(x,0) = wy(x), 0sxsh.
) The values of u,(x) and we(x) are obtained from their respective defini- ;"f' '-'i::;
tions by insertion of the given velocity history ;.(x.r). -« {180, _!,_‘“_4
In order that the constitutive relation(2.1) be truly non-linear we
must have o"(Ex) # 0 for some real Ex . Hence when the speed of top o -
' wall is given ' e
° 1
V - ah g :
; we see g satisfies
i.
N e e U L i e L
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. Ny

S |
a"(0) # O . (4.4)

We further impose the condition that (4.2) be strictly hyperbolic,
i.e. the matrix

f
‘l‘l"
LI T T
P A
Ll oaa e ey

o
0 o ®
1 0

possesses real distinct eigenvalues. Strict hyperbolicity is easily seen

to be equivalent to the condition ¢' > 0 . . L
AS. ANALYSIS OF FLOW WITH SECOND CONSTITUTIVE ASSUMPTION: STRESS - _'1
LINEAR FPUNCTIONAL OF A NON-LINEAR FUNCTION OF SHEAR RATE. _ '_-f-_fl:

We consider the perturbed flow governed by constitutive relation ._ s

(2.2). In this case the time evolution is governed by (3.5), (3.6). Again
to simplify matters we write

®
1 v v AN
olf) = ¢ ["(E t R °[ﬁ]] ' s
3.4 S
t '’ -
®
WV . 7
X -
We note (3.6) can be written as .1
=
t (ten) RO
-~ -a t-.t -~ - : "-.;
v, - I-. e o(vx(x.'r))x dt (5.1)

which upon differentiating with respect to t yields

t L.
Vo, " "a [ e-alt-2) o(v, (x,1)) dt + olv (x,t) (5.2) o
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Gtt + u;t - a(\‘rx(x.n))x (5.3)

where we have used (5.1).
From the definitions of u, w above we see
t x

W, = u_,

u

v " o(;)x - ou, (5.4)

with boundary conditions

u(0,t) = u(h,t) = 0, (5.5)
and initial conditions

u(x,0) = ug(x),

w(x,0) = wy(x), 0<x<h.

Again the values of uy(x), W(x) can be obtained from the respective
definition of u,w in terms of the given velocity history ve(x,1),
- < 180,

Also we note that if o"(g) # 0 for some { real and when the speed
of top wall {s given by

V= hg
then

¢(0) = 0,

¢™(0) # 0 . (5.6)

As before the condition o' > 0 implies (5.4) is strictly hyperbolic.
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A6. A BREAKDOWN RESULT.
We have shown in sectfons 4 and 5 that evolution of perturbed flow

is governed by a system of the form

U, = KW, - al, (6.1)
with

u(o,t) = U(n,t) = 0,

Uix,0) = Uq(x), W(x,0) = Wo(x) (6.2)
and

K >0, «x(0)=0, KW0) #O.

Analysis of (6.1), (6.2) has been given in [1]. We shall not repeat that
analysis but only state the relevant breakdown result.
Define Riemann invariants for (6.1) by

: = U+ (W) (6.3)

where

w
(W) -J /K'(s) ds.
0

The transformation given by (6.3) from (UW) R x R to (r,3) R x R is
one-one. Also we assume the initial data r(0,x) = rq¢(x), s(0,x) = s.(x) to
be smooth functions.

Our main breakdown result is as follows.

Theorem 6.1: Suppose |ro|, |s.l are sufficiently small and
K'(0) > 0, K(0) > 0. If r,x or 8,x is positive and sufficiently large
at any point x, then (6.1), (6.2) has a solution (W,U) in C!(0,h] x C'[0O,h]
for only a finite time. A similar result holds if K"(0) < O and PosX OF
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S,,x is sufficiently negative at any point x.

Proof: See the proof of Thm. 3.1 in [1].

Standard existence theorems (see for e'xample Section 1.8 of (8] and
Chaps. 2 and 3 of [9]) imply that under the hypothesis of Theorem 6.1 we ry
have |Ut| + qul + l"tl + |Hx| + o in finite time. This suggests but
does not prove the occurrence of a jump discontinuity in U and W, i.e.

the formation of a shock.

Also we note that since * .
r, R
= U_ + ¢"(WW o

X X T P!

X a . o--d
L

we will have r.x large if U“x or "‘x is large, s.x large if U.,x or -H.x is
large, -r.x large if -u.x or -H.x large, ~Soy large if -U.x or "'x large.

‘: . . . . .
em il

7. PHYSICAL IMPLICATIONS OF BREAKDOWN OF SMOOTH SOLUTIONS
We examine the implications of the breakdown result of Section 6

P

with respect to our two constitutive relatiéns.
First we consider constitutive relation (2.1) In this case we see ____<
that if o"(V/ah) # 0 and u, x(x) or w.x(x) is appropriately sufficiently -.:-_:—51
large of sufficiently negative Uo, (depending on the sign of ¢"(V/ah)),
Theorem 6.1 fmplies |u | + |w | + = in finite time.
Since we know from (3.6) that

. -

u, - a(w)x i;:.;;

and from the definition of u we have .
u = u *+ aw,
ju,l ¢+ |w | + = in finite time implies |vtL + |v,| * = in finite time. b__{
Again this suggests but doesn't prove that v and hence v forms a jump ’ —1
discontinuity in finite time. In this case the singular surface across : j'.;:
which the discontinuity in v is called a vortex sheet. L]
Next we consider the case of constitutive relation (2.2). In this .]
case we see that {f U.x(x) - vt.x(x'O) or ;.x(x) - vxx(x.O) is appropri- ﬂ
Lol
ately sufficiently large or sufficiently negative (depending on the sign RRNONS
of o"(V/h)) Theorem 6.12 implies |v. | + |v, | + = in finite time. Once ST
.“...'.‘1
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more this suggests but doesn't prove that either v_ or . forms a jump

t
discontinuity in finite time. However from the Rankine-Hugoniot jump

condition for (5.4)
~(98y3y o 1o
(dt)[w) {ul
ds . r— -
-(R)["] o [o(w)] (7.1)

we see

—(9s - -5 .

(5e)v, ] [o(vx h)] 3["(";:)1 (7.2)
where x = s{(t) denotes the surface across which the jump occurs. Hence
ir [vx] # 0 then [o(vx)] # 0 (since ¢' > 0) and by (7.2) [Vt] ¢ 0. Con-

versely if [vt] # 0 then from (7.1) we have
-(8)v 1 = v, (7.3)
dt x t "

and hence [vx] # 0. Thus the appearance of a jump in v_ or A implies a

t
Jump in the other.

We define a propagating singular surface across which the accelera-
tion v_ experiences a jump discontinuity as an acceleration wave, Simi-

t
larly we define a propagating singular surface across which the vorti-

city w = curl(vz.zy.yz) = vx(x.t)_e_z experiences a jump discontinuity as a
vortex shock. Our analysis shows that for our flow the vortex shock and
acceleration waves are equivalent and can be expected to form in finite
time i{f constitutive relation (2.2) holds.

We thus see the remarkable effect of choice of constitutive rela-
tion. In one case (2.1) appropriately chosen initial data appears to
force the formation of 5 Jump in v (a vortex sheet) while in the second
case (2.2) appropriately chosen initial data suggests formation of a jump
discontinuity in vx (a vortex shock and equivalently in vt (an accelera-
tion wave).
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:icity is the field variable which changes type. The vorticity of all .
.ds with instantaneous elasticity can change type in motions which perturb

.d ones. Experiments and analysis exhibiting vorticity of changing type

exhibited. The linearized viscoelastic problem is governed by equations

.ng the properties of a telegraph equation. The damping is small when the

.d 'is very elastic. Elastic fluids have a long memory, a large time o
.ssenberg number) for relaxation. The damping is rapid when the relaxation g
: is small even when the flow is very supercritical. It is shown that ' 1
idy flow around a body is of "transonic" type. The linearized problem for
1 over a flat plate is reduced to an integral equation for the vorticity
.:ribution on the plate. The problem of nonlinear wave propagation is
;ussed and the problems of nonlinear smoothing and shocking are

jidered. It is shown (by M. Slemrod) that the shocks of vorticity can —_—
ie from smooth data in some models and shocks of velocity in other models. -=
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